Lecture 19
Continued Fractions II: Inequalities

Real number z, compute integers ag, a1, ... such that ag = |z,
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Why are continued fractions useful/interesting?

1. Gives good approximations to real numbers

2. Continued fractions and higher dimensional variants have applications in
engineering

3. Useful in number theory for study of quadratic fields, diophantine equa-
tions

Theorem 66. One of every two consecutive convergents satisfies
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Theorem 67. One of every three consecutive convergents satisfies

Dn 1
r——|<
’ an |~ V52
Proof. Suppose not, and that
g—Pn < ! forn,n+1,n+ 2
dn \/gq%
1’7& +‘xpn+1 _ Zﬁipn-&-l
qn dn+1 qn gn+1
B 1
dndn+1
S 1 n 1
V2 VB2,
= 5> dntl y Gn
dn dn+1
54+1
N Qn+1 < V5 +
n 2

using the fact that f(z) = « + 2 is strictly increasing on (1, 00)
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leading to a contradiction (4)



Corollary 68. For any irrational real number x, there are infinitely many rational
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numbers % such that ’:1: - %’

Proof. Write convergents as
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Theorem 69. /5 is optimal (cannot be replaced by any larger value) - ie., there does

not exist an o < /5 such that for any irrational x there are infinitely many rational
numbers |z — 2| < L5
q aq

Proof. We won't prove this here [proved in PSet 9], but we’ll give a heuristic
argument for why /5 is the best.

Consider o = 1+2‘/5 = golden ratio. It has the continued fraction [1,1,1,1,...],
and convergents are 1,1+ 1 =21+ 1 =31+2 =214+2 =28 By
induction they are ratios of consecutive Fibonacci numbers.
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Since 8| < 1,8°" — 0asn — oo, so expression tends to a—iﬂ = % asn —
0.



Theorem 70. A real number x is a quadratic irrational (ie., © = r + sv/t where
r,s € Q, and t is a squarefree integer) if and only if its continued fraction is periodic
(33 = [bo7 bl, SN bk,ao,al, e Qp—1,00,01,...0p—-1,-- ] = [bo, . .bk, ag, - - .an_l].)

Proof - Part 1. Suppose © = [bg, b1, ... bk, @0, a1, .- an_1], let 0 = [ag, . - a@n_1l-
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for some positive p,,—1, Pn—2, ¢n—1, gn—2, which leads to a quadratic equation for
0. 0 irrational because it’s an infinite continued fraction. Then = = [bo, .. ., by, 0]
is also a quadratic irrational. O

Proof - Part 2. Want to show that if z = ”Tﬁ, where a, b, c are integers, b >
0, ¢ # 0, b not a perfect square, then continued fraction of z is periodic.

Step 0: We can write this as

ac + Vbc?
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if¢> 0, or <0
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In either case, bc? — (+ac)? = (b — a?), which is divisible by £c?. In either
case, we've written x as
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Fix such an expression (in particular, d).

Step 1: Let 2y = = and define by induction
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So far, we know B;, C; are rational numbers. Strategy will be to show that B;, C;
are integers, and that they’re bounded in absolute value - use this to show that
they repeat.



Definitions of B;;1, Ci+1 motivated by
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