
Lecture 19
Continued Fractions II: Inequalities

Real number x, compute integers a0, a1, . . . such that a0 = bxc,

1
x = a0 +

1
a1 +

. .a2 .

Let x = 1
1 , real number ≥ 1 as long as well defined, a =− 1a0

bx1c, x2 = 1
x x1−a1 .

For i > 0, ai ≥ 1.
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1, . . . an]q . n

qn
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n
→∞.
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Why are continued fractions useful/interesting?

1. Gives good approximations to real numbers

2. Continued fractions and higher dimensional variants have applications in
engineering

3. Useful in number theory for study of quadratic fields, diophantine equa-
tions

Theorem 66. One of every two consecutive convergents satisfies

∣∣
q

∣∣ p∣x− n

n

∣∣ 1∣ ≤ 2q2n

Proof. ∣∣∣p∣ n p− n+1 ∣∣∣ 1 1 1∣ = +
qn q +1 qnq 2 2

n n+1
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2qn 2qn+1

using AM-GM inequality with 1
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x−
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p 1 p 1⇒
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∣∣∣∣ ≤ or n+1
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Theorem 67. One of every three consecutive convergents satisfies∣∣∣ p
x− n

qn

∣∣∣ 1≤ √
5q2n

Proof. Suppose not, and that

∣ ∣
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+
q

∣∣∣ 1∣ ≤ √ for n, n+ 1, n 2
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∣
=

∣
q q

∣
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∣
1 1
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5q2n

√
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√ q⇒ n+1 qn
5 > +

qn qn+1

qn+1

√
5 + 1⇒ <

qn 2

using the fact that f(x) = x+ 1
x is strictly increasing on (1,∞)

qn 1 1
√

5⇒ =
q qn > √ =

5+1

− 1

n+1 2qn+1 2

√
Same argument for n+ 1 and qn+ 2 says that n+2 < 5+1

qn+1 2 .

qn+2 an+2qn+1 + qn
=

qn+1 qn+1

qn
= an+2 +

q
√ n+1

5 1≥ 1 +
−

2√
5 + 1

=
2

leading to a contradiction ( ) � 
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Corollary 68. For any∣ irrational∣ real number x, there are infinitely many rational
numbers p such that ∣∣x− p ∣∣ < √1

q q 5q2

Proof. Write convergents as

p1 p2 p3 p4 p5 p6
, , , , , ,, . . .︸q1 q2 q3 q5 q6

one satisfies
︷︷ ︸ ︸q4

one satisfies
︷︷ ︸

�

Theorem 69.
√

5 is optimal (cannot be replaced by any larger value) - ie., there does
not exist an α <

√∣ ∣ 5 such that for any irrational x there are infinitely many rational
numbers ∣∣x− p

q

∣∣ < 1
αq2

Proof. We won’t prove this here [proved in PSet 9], but we’ll give a heuristic
argument for why

√
5 is the best.

Consider α = 1+
√
5 =2 golden ratio. It has the continued fraction [1, 1, 1, 1, . . . ],

and convergents are 1, 1 + 1 = 2, 1 + 1 = 3 , 1 + 2 = 5 , 1 + 3 = 8 . . .1 2 2 3 3 5 5 . By
induction they are ratios of consecutive Fibonacci numbers.

αn
Fn =

− βn 1 +
√

5 1
√

, α = , β =
− 5

α− β 2 2

We’ll show ∣∣∣F∣ n+1 ∣ 1− α
∣∣ 1∣ · F 2

n → = n
F

√ as
n α− β 5

→∞

∣∣∣F ∣∣∣ ∣∣∣αn+1 −∣ n+1

Fn
− α∣ · F 2 βn+1 2

αn

n = ∣ α
− βn

∣ αn βn
− ·

α β∣∣αn+1

−
− βn+1 − αn

∣∣ (∣∣
+1

−
+ βnα α

)
n βn 2

= ∣ αn
| − |

n n

− βn
∣∣
|α− β|2

β
=

|α− β||α − βn|

∣∣
|α− β|2

=
|(βα)n − β2n|
|α− β|

=
|(−1)n − β2n|
|α− β|

Since |β| < 1, β2n → 0 as n → ∞, so expression tends to 1 = 1
α−β √ as n

5
→

∞. �
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Theorem 70. A real number x is a quadratic irrational (ie., x = r + s
√
t where

r, s ∈ Q, and t is a squarefree integer) if and only if its continued fraction is periodic
(x = [b0, b1, . . . bk, a0, a1, . . . an 1, a0, a1, . . . an 1, . . . ] = [b0, . . . b , a , . . . a ].)− − k 0 n−1

Proof - Part 1. Suppose x = [b0, b1, . . . bk, a0, a1, . . . an 1], let θ = [a0, . . . a− n−1].

pn 1θ + pn 2
θ = [a0, a1, . . . an ,−1 θ] =

− −

qn−1θ + qn−2

for some positive pn 1, pn 2, qn 1, q− − − n−2, which leads to a quadratic equation for
θ. θ irrational because it’s an infinite continued fraction. Then x = [b0, . . . , bk, θ]
is also a quadratic irrational. �

√
Proof - Part 2. Want to show that if x = a+ b , where a, b, c are integers, b >c
0, c = 0, b not a perfect square, then continued fraction of x is periodic.

Step 0: We can write this as

ac+
√
bc2 −ac+

√
bc2

x = c
2

if > 0, or
c −c2

if c < 0

In either case, bc2 − (±ac)2 = c2(b − a2), which is divisible by ±c2. In either
case, we’ve written x as

B0 +
√
d

x = , with C
C0

|d−B2
0

Fix such an expression (in particular, d).

Step 1: Let x0 = x and define by induction

ai = bxic
Bi +

√
d

xi =
Ci
1

xi+1 =
xi − ai

Bi+1 = aiCi −Bi
d

Ci+1 =
−B2

i+1

Ci

So far, we knowBi, Ci are rational numbers. Strategy will be to show thatBi, Ci
are integers, and that they’re bounded in absolute value - use this to show that
they repeat.
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Definitions of Bi+1, Ci+1 motivated by

Bi +
√
d

xi =
Ci
1

xi+1 =
xi − ai

1
=

Bi+
√
d

Ci
− ai
Ci

= √
d− (aiCi −B√ √ i)

Bi+1 + d Ci( d+ aiCi
=

−Bi)
Ci+1 d− (a 2

iCi −Bi)
aiCi

=
−Bi +

√
d

d−B2
i+1

Ci

5



MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers
Spring 2012
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



