Lecture 2
Euclidean Algorithm, Primes

Euclidean gcd Algorithm - Given a,b € Z, not both 0, find (a, b)

Step 1: If a, b < 0, replace with negative

Step 2: If a > b, switch a and b

Step 3: If a = 0, return b

Step 4: Since a > 0, write b = ag + r with 0 < r < a. Replace (a, b) with
(r,a) and go to Step 3.

Proof of correctness. Steps 1 and 2 don't affect ged, and Step 3 is obvious. Need
to show for Step 4 that (a,b) = (r,a) where b = ag+ r. Let d = (r,a) and
e =(a,b).
d=(r,a) = dla, d|r
=dlag+r=2>
= d|a,b
=d|(a,b) =€
e = (a,b) = e|a, elb
=elb—ag=r
=el|r,a

=e|(r,a) =d

Since d and e are positive and divide each other, are equal. |

Proof of termination. After each application of Step 4, the smaller of the pair (a)
strictly decreases since r < a. Since there are only finitely many non-negative
integers less than initial a, there can only be finitely many steps. (Note: because
it decreases by at least 1 at each step, this proof only shows a bound of O(a)
steps, when in fact the algorithm always finishes in time O(log(a)) (left as
exercise))

To get the linear combination at the same time:

43 27
311 0
127]0 1
116 1 -1
1111 2
2[5 2 -3
5015 8
0 | = 1=—5(43) +8(27)



(Definition) Prime number: A prime number is an integer p > 1 such that it
cannot be written as p = ab with a, b > 1.

Theorem 5 (Fundamental Theorem of Arithmetic). Every positive integer can be
written as a product of primes (possibly with repetition) and any such expression is
unigue up to a permutation of the prime factors. (1 is the empty product, similar to 0
being the empty sum.)

Proof. There are two parts, existence and uniqueness.

Proof of Existence (by contradiction). Let set S be the set of numbers which cannot
be written as a product of primes. Assume S not empty, so it has a smallest
element n by WOP.

n = 1 not possible by definition, so n > 1. n cannot be prime, since if it were
prime it'd be a product with one term, and so wouldn’t be in S. So, n = ab with
a,b> 1.

Also, a,b < n so they cannot be in S by minimality of n, and so a and b are
the product of primes. n is the product of the two, and so is also a product of
primes, and so cannot be in S (), and so .S is empty.

Proof of Uniqueness.

Lemma 6. If p is prime and p|ab, then pla or p|b.

Proof. Assume p { a, and let g = (p, a). Since p is prime, g = 1 or p, but can’t be
p because gla and p { a, so g = 1. Corollary from last class (4) shows that p|b. O

Corollary 7. If plaias . . . an, then pla; for some i.

Proof. Obvious if n = 1, and true by lemma for n = 2. By induction, suppose
that it holds for n = k. Check for n = k + 1:

plaias .. .ap api1
N—_———
A B
plA =plaras...ak
p|AB = = pla,for some i by the induction hypothesis
pIB = plary

And so we see that the hypothesis holds for n = k + 1 as well. O



To prove uniqueness, say that we have n = p1ps...pr = ¢1¢2 . . . g5, which is the
smallest element in a set of counterexamples. We want to show that r = s and
pip2 . .. pr is a permutation of g1z . . . gs.

piln = q1qz - . . gs, SO p1|g; for some i. Since p; and ¢; are prime, p; = g;. Cancel
togetpa...pr = ¢1...¢i—1¢i+1---gs. This number is less than n, and so not
in the set of counterexamples by minimality of n, and sor —1 = s — 1 and
D2 ...pris a permutationof ¢; ... ¢gi—1¢i+1...¢s,and sor = sand pips...prisa
permutation of qigz . . . gs. () [ |

Theorem 8 (Euclid). There are infinitely many primes

Proof by contradiction. Suppose there are finitely many primes p1, ps . . . p,, with
n > 1. Consider N = (pi1p2...pn) + 1. N > 1, and so by the Fundamental
Theorem of Arithmetic there must be a prime p; dividing N. Using Euclidean
ged algorithm, (p;, (p1p2...pn) +1) = (piy1) =1, and so p;  N. So, p # p; for
any ¢, and p is a new prime 4. |

Note: If you take first n primes and compute a,, = (p1p2...p,) + 1, it's an
open problem whether all a,, (2,3,7,31,211,2311,30031...), are squarefree (no
repeated factors).

Theorem 9 (Euler). There are infinitely many primes

Proof (sketch) by contradiction. Suppose there are finitely many primes p;, pa,
.., Pm. Then any positive integer n can be uniquely writtenas n = p{*p3* ... pSe
with e, ez ... e > 0. Consider product:

1 1 1 1 1 1 1 1
Y= 1+7+72+73”' 1_|_7_|_72_|_73”. 1+7+7
p1 b1 V41 P2 Py Ps Pm  DPm

1—

1 1 1 1
where |1+ —+ 5+ —5... | =—73 <0
P i i Pi

? [

Since each term is a finite positive number, ¥ is also a finite positive number.
After expanding ¥, we can pick out any combination of terms to get

(b)) (k)2

which means that ¥ is the sum of the reciprocals of all positive integers. Since
all the terms are positive, we can rearrange the terms to get
1 1 1 1




and so ¥ diverges, which contradicts finiteness of 3 (4). |

Note: Euler’s proof shows that }° ;.. % diverges

Some famous conjectures about primes

Goldbach Conjecture
Every even integer > 2 is the sum of two primes

Twin Prime Conjecture
There are infinitely many twin primes (n, n + 2 both prime)

Mersenne Prime Conjecture
There are infinitely many Mersenne primes, ie., primes of the form 2™ — 1.
Note: if 2™ — 1 is prime, then n itself must be a prime.
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