Lecture 21
Brahmagupta-Pell Equation

Recall - For quadratic irrational = we defined
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We showed that B;, C; € Z, and that x has a purely periodic expansion if and
onlyifz > 1land -1 <7 <0.

Corollary 72. Let d be a positive integer, not a perfect square. Then the continued
fraction of the number x = \/d + |\/d| is purely periodic.

Proof.

+[Vd] > 1
— |Vd] satisfies —1 < T < 0since |Vd] < Vd < [Vd] +1
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Let’s analyze this = v/d + |V/d| a little more. z = M, and 1|d — [Vd]?,
so we can take Cy = 1, and By = v/d. Want to see what happens for higher n -
what z,, looks like. Let x = [ag, a7, .- a,—_1) be the continued fraction of z, r is
chosen as smallest possible period.

Claim: o = x,x1, Zs, ... x,_1 are all distinct
Proof. If xg = z, for some i < r — 1, then we’d have period i smaller thanr W

So z,, = z, if and only if n is a multiple of r (z,,, = 2, if m =n mod r). We'll
show that C), = 1 if and only if n is a multiple of r, and C,, cannot be —1. First,
ifn==Fr



By, d
ﬂ:%:xn:%:\gﬂﬁj

Ckr
By, — Cir L\/;ij = \/8(C;W — 1) only happens if Cj,, = 1 (otherwise integer =
irrational). Conversely, if C,, = 1 then z,, = B,, + V.

We know z,, is also purely periodic (@, Gnt1, - Gnir—1), SO

T,>1land —1<7, <0
= -1<B,—Vd<0
=B, <Vd<B,+1
= B, = |Vd|

which means that z,, = v/d + |V/d| = w0, so that n is a multiple of r.
Suppose C,, = —1. Then z,, = —B,, — V/d is purely periodic, so
2, >1= —B, —Vd>1

and
1<Tm<0=-1<—-B,+Vd<0

which means that B,, > vVdand B, < —vVd — 1 = Vd < —Vd — 1, which is
impossible.

Note that ag = |z] = |Vd + [Vd]]

= |Vd] + |Vd| = 2|Vd]. So continued
fraction expansion of z = v/d + |V/d] is

2|Vd],ay,...a,_1] = [2|Vd],ay,...ar_1,2|Vd]]

Continued fraction expansion of v/d will look like that of v/d + [ V/d] except with
a different first digit [|Vd], a1, ...a,_1,2[Vd]].

Note: We can run the (B, C,) process for z = Vd = 0%‘/3, Co=1,By =0,
note that z; = ﬁ is the same for x = v/d and for x = v/d + [V/d], so since
Ty = B’”%n\/g is the same for these two 2’s as long as n > 1, and also because
Ty = B“%ﬁ, then B,,, C,, are the same for n > 1 whether we start with v/d or

Vd + L\/ﬁj, so still true that C,, # —1 and C,, = 1 if and only if n = kr-.

Theorem 73. If d € N is not a perfect square, and {£*} are the convergents to V4,

and C,, is the sequence of integers we defined for x,, (starting with xy = 0%‘/3 ), then
pr —day = (=1)" 1 Chpr.



Proof.

\/;i — 3o = Tpit1Pn + Pn-1
Tp4+19n + Gn—1

Bni1+Vd
(25 p 4 pa

Bn \/a
(B g + g

_ (Bn+1pn, + pn—lcn,+1) + \/gpn
(Bn—i-IQn + Q’n—lc’ﬂ-‘rl) + ﬁqn
dQn + \/g(Bn+1Qn + Qn—10n+1) = (Bn+1pn + pn—10n+1) + \/;lpn

By comparing coefficients, we get that

(Bn41Gn + @n—1Cns1)Pn = P2
(Bns1Pn + Pn—1Cns1)n = da;,
Cr-1 (Pnn-1 — GnPn—1) = p2, — dq_,
(=nn—t
Py —dgs = (—=1)""'Cpy

Corollary 74. Ifr is period of the continued fraction expansion of \/d, then p?__| —
dql?:r—l = (_1)1{:,'4'

Remark 2. If nr is even then we get a solution (p,, g,) of the P-B equation
since p?,_; —dg?, ; = (—1)®*" = 1, so we get infinitely many solutions since
convergents are all distinct.

Back to P-B equations z? — dy* = 1 withd € Z, want z,y € Z. If d < 0, then
z? + |dly* = 1, since z,y € Z, finite number of easily computed solutions. So,
can assume d > 0. We showed last time that in fact, all solutions must come
from continued fraction of v/d.

More generally, (*) 2% — dy? = N for N € Z. If (z,y) is a solution of (*), then
so is (&, +y) for any choice of signs. Some trivial solutions for z = 0 or y = 0,
so look for nontrivial. Then we can assume ,y > 0. These are called positive
solutions. Also assume that (z,y) = 1. (If not, replace N with ;V—Q if g = (z,9)).
So only looking for positive, primitive (z,y).

Theorem 75. Let d € N, d # O, and let N € Z such that |[N| < Vd. Then
any positive primitive solution (z,y) of x2 — dy* = N has the property that Tisa
convergent to V.

Proof. Suppose p is a positive real number such that ,/p is irrational and o € R,



s,t € N such that s — t?p = o and also that 0 < o < |/p.

Claim: .
S
TV < 5

Proof of Claim.
; —Jp= %
_ <(s —t/p)(s+ t\/ﬁ))
t(s +ty/p)
s2 —t2p

t(s+t/p)

(s +typ)
Note that because s*> — t?p = 0 > 0, s > t,/p, s0 s + t\/p > 2t,/p, so that

s o L 1
0<-—yp< < =—
PV 2 /p 202 p 22

O

Now, using the claim we see that % is a convergent to the continued fraction of
/P (by Problem 4 of PSet 9).

If N >0, justuse o = N,p =d,(s,t) = (z,y) to show that 7 is a convergent

to Vd. If N < 0, rewrite 2% — dy? = N as y? — 222 = — & then take 0 = — 2.

IN| <Vd,s00< o< % = %, and so ¥ is a convergent to continued fraction

1

of NeE

Note that if the continued fraction of v/d = [ag, a1, .. .], then continued fraction
1 1 . .

of 7= [0,a0,a1,...] means that convergents of 5 are just reciprocals of

convergents of v/d.

1 1 qk
[0,a0,a1,...] = ——— = —— = —
ap + -1 Z*: Pk
.
ey s 1 . .
and so if £ is a convergent to Jar then % is a convergent to Vd |

Theorem 76. Let d € N, d # [I. All positive solutions to x* — dy* = +1 are of the
form (z,y) = (pn, qn) where £ is convergent to Vd. If r is the period of the continued
fraction of \/d, then



o Ifriseven, z? — dy* = —1 doesn't have any solutions, and all positive solutions
of 2 — dy? = 1are given by x = pr—1,y = qr—1 fork =1,2,3,....

e Ifris odd, then all positive solutions to x* — dy* = —1 are given by taking x =
Pkr—1,Y = Qer—1 for k =1,3,5, ..., and all positive solutions to x* — dy* = 1
are given by taking x = prr_1,Yy = qrr—1 for k =2,4,6, ...

Proof. If (z,y) is a positive solution to 2% —dy? = +1 then ged(z, y) = 1 is forced.
By theorem it must come from convergent to v/d, say E» But we showed that
p2 —dg? = (=1)""Cy41. Also C 41 can’t be —1, and can be 1 if and only if
n+1is a multiple of r -ie., n = kr — 1. So, p?,_; —dq},_, = (—1)¥" = if r even,
can’t be —1, and if » odd, can be +1. |

Remark 3. Suppose two positive solutions (z1,y1) and (x2, y2) are solutions of

x? 7dy2 =1,thenz; < 29 <— Y1 < Ya.

Proof. y1 <ya = 23 =1+dy} <1+ dy3 = 2% and 21,72 > 050 71 < z2. Same
for other direction, which means that we can order the positive solutions W

Theorem 77. If (x1,y1) is the least positive solution of 2> —dy? = 1 where ) # d € N,
then all positive solutions are given by (,, Yy, ) where x, + Vdy, = (x1 + Vdy)™

Eg. For 22 —2y% = 1, (3,2) is the smallest positive solution. Then (3 + 2v/2)? =
17 4+ 12v/2 = (17, 12) is the next solution.
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