Lecture 22
Four Squares Theorem

Pell-Brahmagupta Equation (continued) - 22 — dy*> = 1,0 # d € N, if (z,y) and
(2, w) solutions then = < z = y < w if and only if z + Vdy < z + Vdw.

Theorem 78. If (x1,y1) is the least positive solution of 2> —dy? = 1 whereJ # d € N,
then all positive solutions are given by (x,, y,) where x,, + Vdy, = (x1 + \/&Zh)"
forn=1,2,3...

Proof. First see that (z,y,) is a solution. We know that (x1,y;) is a solution
—dy? = 1.
(w1 + Vdy) (21 = Viyr) = 1
T 4+ Vdyn = (21 + Vidy)"
taking conjugates, =, — Vdy, = (z1 — Vdy)"
(20 + Vdy,) (@ — Vdyn) = (x1 + Vdy)" (21 — Vdy,)"

zh — \/gyn ((z1+ f@h)(iﬁl \/gyﬂ)n
1"=1

S0 (xn, yn) is indeed a solution. Why are these all the positive solutions? Sup-
pose that (s,t) is a positive solution not of the form (z,,, y,) for any n. Then
s+ t\/d is a positive (> 1) real number. Not that {z,, + v/dy,} is a sequence of
positive real numbers which increase to infinity, since

—_———

>1

So pick n such that z,, + ynVd < s+ tVd < Tnt1 + Ynt1 V. Multiply the
sequence of inequalities by x,, — y,V/d (it’s a positive real number because it

equals =, — Vdy, = - +1/Ey ). We see

= (&0 — Vdy,) (@ + Vdy,)
< (zn — Vdyn)(s + tVd)
a+bVd, a,be
< (2n = Vdyn) (@ng1 + Viyni1)
= (1 — Vdy1)" (w1 + Vdy)" !
= (1 + Vdy)




and so
1<a+bVd <z +Vidy

We'll see a,b € N, then it will contradict minimality of (z1,y1)

1
a—bVd=———>1landa+bVd>1,500<a—bVd <1
a+bV/d

Adding 14 0 < 2a gives a > 1 > 0 which means that a > 1. Also, b > “—ng >
0 = (a,b) is a positive integer solution. Why is a + bv/d a solution?

(a4 0Va) (0 — V) = (20 — Vya)(s + 1) (n + Valya)(s — V)
a® —bv?d = (22 — dy?)(s* —dt*) =1

P-B equation is quite useful in many diophantine equations.

Eg. Putnam asked, can we find infinitely many triples of consecutive integers,
each of which is a sum of 2 squares?

Yes. Suppose we choose n—1,n, n+1 where we setn = 2 = n = 2?+0%, n+1 =
22 +12,2%2 — 1 = n — 1 = sum of 2 squares y* + y?, so we need to find infinitely
many (z,y) such that z2 — 2y = 1. P-B, so ok.

Proposition 79. Let N € Z,d € N,d # O. If 2* — dy? = N has one solution, it has
infinitely many.

Proof. Let (z1,1) be a solution, so (1 + v/dy1)(x1 —Vdy,) = N. Let (sp, t,,) be
infinitely many solutions to zo — dy? = 1 = (s, + Vdt,,) (s, — Vdt,) = 1. Then

if we let ,, +Vdy, = (21 +Vdy1)(s, +Vdt,) it’s easy to see 22 — dy2 = N and
that these are all distinct. So we get infinitely many solutions. |

Eg. Prove that n? 4+ (n + 1)? is a perfect square for infinitely many values of n.

Proof.
n4+nl+on+1=2n2+2n+1=m?
4n? 4+ 4n + 2 = 2m?
(2n + 1) +1=2m?

Let [ be 2n+1 = get a solution of [? + 1 = 2m?. Conversely, if [+ 1 = 2m? then

lis odd, so n = 11 is an integer, and m? = n® + (n + 1)2. (Just want to show

that [ — 2m? = —1 has infinitely many solutions. We know it has an obvious
solution (I,m) = (1, 1) = it has infinitely many:.) |



Theorem 80 (Four Squares Theorem). Every non-negative integer is a sum of 4
integer squares.

Proof. Just like how we use complex numbers in the proof of the two squares
theorem to establish that (a* + b?)(c? + d*) = (ac — bd)* + (ad + bc)?, we'll use
quaternions now

Q={a+bi+cj+dk:abcd R}
i, j, k are “imaginary” where

=5 =k =ijk=-1

ij =k ji=—k
jk=i kj = —i
ki=j ik =—j

Multiplication in @) is non-commutative (but associative - z1 (z2x3) = (z122)x3,
etc). Addition is component-wise. If z = a + bj + ¢j + dk, define conjugate
Z=a—bi—cj—dk. Normis ||z]| = 2Z = a® + b? + % + d°.

Note that Zw = w - Z. It suffices to check things like
k=R =T=77=(=j)(~0)

SO
lzw]| = zwzw = 20wz = 2(ww)z = (2Z)(ww) = || 2] |[w]]

So (a2 +b*>+ 2 +d*)(e* + f2 + g*> + h?) = (ae — bf — cg — dh)? + 3 other similar
terms = product of sum of 4 squares is a sum of 4 squares. So enough to show
n is a sum of 4 squares for the case that n = 0, 1, or prime. 0 = 02 + 02 + 02 + 02,
1=12+0%40%407% 2 = 12 4+ 17 4+ 0? + 0%, so enough to show that any odd
prime p is a sum of 4 squares.

Lemma 81. There’s a positive integer m < p such that mp is a sum of 4 squares.

Proof. Recall that if p is an odd prime then 22 + y?+1 = 0 mod p has a solution
(by pigeonhole principle). Let’s suppose that we’ve produced x,y mod p so

|, [yl <§-50
P\?2 P’ 2
5) +1—5+1<p

So 2% + y? + 12 + 02 = mp for some 0 < m < p. U

$2+y2+1<2<

Let m be the smallest positive integer such that mp is a sum of 4 squares. We've
showed m < p. If m = 1 done. So assume m > 1 and we'll get a contradiction



by producing a smaller value of m. If m is even, mp = 2% + y* + 2% + w? is
even, so the number of odd elements of {z,y, z, w} is even. We can pair these
up, say, as {z,y} and {z, w} such that x and y have same parity and z, w have
same parity, so

r+y r—y Z2+wW z—w
2 72 7 2 7 2

r+y 2+ r—vy 2+ Z+w 2+ Z—w 2_x2+y2+22+w2
2 2 2 2 B 2

= (%) p (decreasing m)

€z

So suppose [ is some prime dividing m, necessarily odd. Write m = gl, so 2% +
y? + 22 +w? = glp =0 mod I. Note [ < pbecause [|m, m < p. Reduce z,vy, z,w
toz',y,2',w’ modl (ie.,, x =2’ mod [, etc.) such that |2/|, ||, ||, |w'| < % If
z',y, 2w’ are all 0, then z, y, z, w are also 0 mod [, and

(D + () @) () =F=7
and ¢ < gl = m reducing m. So we may assume z’,y/’, z’, w’ are not all 0.
r+yi+zi+twk=2+yi+72j+wk modl
Let

p=x+yi+ zj +wk
oc=2'+yi+i+w'k

Then

loll = =l

— a2 4y 422

positive
=22+ 9y*+22+w? mod!
=0 modl!

So it's a multiple of [, say hl. Since |z, |y, |z, |w| < &,

l 2
x2+y2+z2+w2<4<2) =2
So0< h <.

Also po = pp mod | = 2% + y* + 2% + w? = 0 mod [, so the components of



quaternion o7 are all divisible by I. Let 8 = £7.

e
o1 = |

1
=5 e

1
:ﬁ(x2 +y2+z2+w2)(m’2+y/2+z/2+w'2)

glp hl
(glp)(hl)

l2
= (gh)p

Note that m = gl and gh < gl since h < [, so we have a sum of 4 squares which
is a smaller multiple of p. |
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