
Lecture 4

(Definition) Complete Residue System: A complete residue system mod m
is a collection of integers a1 . . . am such that ai 6≡ aj mod m if i = j and any
integer n is congruent to some ai mod m

(Definition) Reduced Residue System: A reduced residue system mod m is
a collection of integers a1 . . . ak such that ai 6≡ aj mod m if i = j and (ai,m) = 1
for all i, and any integer n coprime to m must be congruent to some ai mod m.
Eg., take any complete residue system mod m and take the subset consisting of
all the integers in it which are coprime to m - these will form a reduced residue
system

Eg. For m = 12
complete = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
reduced = {1, 5, 7, 11}

(Definition) Euler’s Totient Function: The number of elements in a reduced
residue system mod m is called Euler’s totient function: φ(m) (ie., the number
of positive integers ≤ m and coprime to m)

Theorem 15 (Euler’s Theorem).

If (a,m) = 1, then aφ(m) ≡ 1 mod m

Proof.

Lemma 16. If (a,m) = 1 and r1 . . . rk is a reduced residue system mod m, k = φ(m),
then ar1 . . . ark is also a reduced residue system mod m.

Proof. All we need to show is that ari are all coprime to m and distinct mod m,
since there are k of these ari and k is the number of elements in any residue
system mod m. We know that if (r,m) = 1 and (a,m) = 1 then (ar,m) = 1.
Also, if we had ari ≡ arj mod m, then m|ari − arj = a(ri − rj). If (a,m) = 1
then m|ri − rj ⇒ ri ≡ rj mod m, which cannot happen unless i = j. �

Choose a reduced residue system r1 . . . rk mod m with k = φ(m). By lemma,
ar1 . . . ark is also a reduced residue system. These two must be permutations of
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each other mod m (ie., ari ≡ rj(i) mod m).

r1r2 . . . rk ≡ ar1ar2 . . . ark (mod m)

r r . . . r ≡ aφ(m)
1 2 k r1r2 . . . rk (mod m)

(r1r2 . . . rk,m) = 1⇒ can cancel

aφ(m) ≡ 1 (mod m)

�

Corollary 17 (Fermat’s Little Theorem).

ap ≡ a (mod p) for prime p and integer a

Proof. If p - a (ie., (a, p) = 1) then aφ(p) ≡ 1 mod p by Euler’s Theorem. φ(p) =
p − 1 ⇒ ap−1 ≡ 1 mod p ⇒ ap ≡ a mod p. If p|a, then a ≡ 0 mod p so both
sides are 0 ≡ 0 mod p. �

Proof by induction.

Lemma 18 (Freshman’s Dream).

(x+ y)p ≡ xp + yp (mod p) x, y ∈ Z, prime p

Use the Binomial Theorem.
p−1

(x+ y)p = xp + yp +
∑(

p
)
xkyp−k

k
k=1

) ≡0 mod p

We saw that
(
p is divisible by p 1k for ≤ k ≤

︸
p− 1

︷︷
, so

︸

(x+ y)p ≡ xp + yp (mod p)

�

Induction base case of a = 0 is obvious. Check to see if it holds for a + 1
assuming it holds for a

(a+ 1)p − (a+ 1) ≡ ap + 1− (a+ 1) (mod p)

≡ ap − a (mod p)

≡ 0 (mod p)

(a+ 1)p ≡ (a+ 1) (mod p)

This is reversible (if holds for a, then also for a− 1), and so holds for all integers
by stepping up or down �
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Proposition 19 (Inverses of elements mod m). If (a,m) = 1, then there is a unique
integer b mod m such that ab ≡ 1 mod m. This b is denoted by 1

a or a−1 mod m

Proof of Existence. Since (a,m) = 1 we know that ax+my = 1 for some integers
x, y, and so ax ≡ 1 mod m. Set b = x. �

Proof of Uniqueness. If ab1 ≡ 1 mod m and ab2 ≡ 1 mod m, then ab1 ≡ ab2
mod m⇒ m|a(b1 − b2). Since (m, a) = 1, m|b1 − b2 ⇒ b1 ≡ b2 mod m. �

Theorem 20 (Wilson’s Theorem). If p is a prime then (p− 1)! ≡ −1 mod p

Proof. Assume that p is odd (trivial for p = 2).

Lemma 21. The congruence x2 ≡ 1 mod p has only the solutions x ≡ ±1 mod p

Proof.

x2 ≡ 1 mod p

⇒ p|x2 − 1

⇒ p|(x− 1)(x+ 1)

⇒ p|x± 1

⇒ x ≡ ±1 mod p

�

Note that x2 ≡ 1 mod p⇒ (x, p) = 1 and x has inverse and x ≡ x−1 mod p
{1 . . . p− 1} is a reduced residue system mod p. Pair up elements a with inverse
a−1 mod p. Only singletons will be 1 and −1.

(p− 1)! ≡ (a1 · a−11 )(a 1 1
2 · a−2 ) . . . (ak · a−k )(1)(−1) (mod p)

≡ −1 (mod p)

�

Wilson’s Theorem lets us solve congruence x2 ≡ −1 mod p

Theorem 22. The congruence x2 ≡ −1 mod p is solvable if and only if p = 2 or
p ≡ 1 mod 4
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Proof. p = 2 is easy. We’ll show that there is no solution for p ≡ 3 mod 4 by
contradiction. Assume x2 ≡ −1 mod p for some x coprime to p (p = 4k + 3).
Note that

p− 1 = 4k + 2 = 2(2k + 1)

so (x2)2k+1 ≡ (−1)2k+1 ≡ −1 mod p. But also,

(x2)2k+1 ≡ x4k+2 ≡ xp−1 ≡ 1 mod p

So 1 ≡ −1 mod p⇒ p|2, which is impossible since p is an odd prime.

If p ≡ 1 mod 4:

(p− 1)! ≡ −1 (mod p) by Wilson’s Theorem

( )((1)(2) . . . (p− 1)) ≡ −1 (mod p)

p
1 · 2 . . . − 1 p+ 1

. . . p )︸ 2
− 1 ≡ −1 (mod p︷︷

x
︸ ︸ 2

show that second
equals

︷︷
factor

the first

p

︸
− 1 ≡ (−1)1 (mod p)

p− 2 ≡ (−1)2 (mod p)

...
p+ 1 p 1≡ (−1)

−
(mod p)( 2 2

p+ 1
)

p−1

(
p 1

. . . (p− 1) ≡ (−1) 2 1 · 2 . . .︸ 2

(
−

second
︷︷

factor
︸ 2

))
(mod p)︸ ︷︷

x
︸

p−1
2 (is even) since p ≡ 1 mod 4, and so second factor equals the first factor, so
x = p−1 !2 solves x2 ≡ −1 mod p if p ≡ 1 mod 4. �

Theorem 23. There are infinitely many primes of form 4k + 1

Proof. As in Euclid’s proof, assume finitely many such primes p1 . . . pn. Con-
sider the positive integer

N = (2p p . . . p )21 2 n + 1

N is an odd integer > 1, so it has an odd prime factor q = pi, since each pi
divides N − 1. q|N ⇒ (2p . . . p )2 ≡ −1 mod q, so x21 n ≡ −1 mod q has a
solution and so by theorem q ≡ 1 mod 4, which contradicts q = pi. �
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(Definition) Congruence: A congruence (equation) is of the form anx
n +

an 1x
n−1 · · · + a0 ≡ 0 mod m where a− n . . . a0 are integers. Solution of the

congruence are integers or residue classes mod m that satisfy the equation.

Eg. xp − x ≡ 0 mod p. How many solutions? p.

Eg. x2 ≡ −1 mod 5. Answers = 2, 3.

Eg. x2 ≡ −1 mod 43. No solutions since 43 ≡ 3 mod 4.

Eg. x2 ≡ 1 mod 15. Answers = ±1,±4 mod 15.

Note: The number of solutions to a non-prime modulus can be larger than the
degree

(Definition) Linear Congruence: a congruence of degree 1 (ax ≡ b mod m)

Theorem 24. Let g = (a,m). Then there is a solution to ax ≡ b mod m if and only
if g|b. If it has solutions, then it has exactly g solutions mod m.

Proof. Suppose g - b. We want to show that the congruence doesn’t have a
solution. Suppose x0 is a solution⇒ ax0 = b + mk for some integer k. Since
g|a, g|m, g divides ax0 −mk = b, which is a contradiction. Conversely, if g|b,
we want to show that solutions exist. We know g = ax0 +my0 for integer x0, y0.
If b = b′g, multiply by b′ to get

b = b′g = b′|ax0 +my0

= a(b′x0) +m(b′y0)

⇒ a(b′x0) ≡ b (mod m)

and so x = b′x0 is a solution.

We need to show that there are exactly g solutions. We know that there is one
solution x1, and the congruence says ax ≡ b ≡ ax1 mod m.

a(x− x1) ≡ 0 (mod m)

a(x− x1) ≡ mk for some integer k
g = (a,m)⇒ a = a′g, m = m′g

So (a,m′) = 1, so a′g(x−x1) = m′gk ⇒ a(x−x1) = m′k for some k. Som′|x−x1,
so x ≡ x1 mod m′, so any solution of the congruence must be congruent to x
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mod m′ = m. So all the solutions are x1, x1 +m′, x1 + 2m′, . . . , x1 + (g − 1)m′.
They are all distinct, so they are all the solutions mod m. �
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