Lecture 4
FFermat, Euler, Wilson, Linear Congruences

(Definition) Complete Residue System: A complete residue system mod m
is a collection of integers «; ... a,, such that a; # a; mod m if i # j and any
integer n is congruent to some a; mod m

(Definition) Reduced Residue System: A reduced residue system mod m is
a collection of integers a; . .. ax such that a; # a; mod mifi # jand (a;,m) =1
for all 4, and any integer n coprime to m must be congruent to some a, mod m.
Eg., take any complete residue system mod m and take the subset consisting of
all the integers in it which are coprime to m - these will form a reduced residue
system

Eg. For m = 12
complete ={1,2,3,4,5,6,7,8,9,10,11,12}
reduced = {1,5,7,11}

(Definition) Euler’s Totient Function: The number of elements in a reduced
residue system mod m is called Euler’s totient function: ¢(m) (ie., the number
of positive integers < m and coprime to m)

Theorem 15 (Euler’s Theorem).

If (a,m) =1, then a®™ =1 mod m
Proof.

Lemma 16. If (a,m) = land ry . ..ry is a reduced residue system mod m, k = ¢(m),
then ary .. .ary is also a reduced residue system mod m.

Proof. All we need to show is that ar; are all coprime to m and distinct mod m,
since there are k of these ar; and k is the number of elements in any residue
system mod m. We know that if (r,m) = 1 and (a,m) = 1 then (ar,m) = 1.
Also, if we had ar; = ar; mod m, then m|ar; — ar; = a(r; —r;). If (a,m) =1
then m|r; — r; = r; = r; mod m, which cannot happen unless i = j. O

Choose a reduced residue system 71 ...7; mod m with k = ¢(m). By lemma,
ary ...ary is also a reduced residue system. These two must be permutations of



each other mod m (ie., ar; = r;(;) mod m).
rire...TE = ariars...ar,  (mod m)
7y = a®™riry g (mod m)
(rire...7rp,m) = 1= can cancel
a®™ =1 (mod m)

Corollary 17 (Fermat’s Little Theorem).
a’? =a (mod p) for prime p and integer a
Proof. If p{a (ie., (a,p) = 1) then a®® =1 mod p by Euler’s Theorem. ¢(p) =

p—1=a’"1 =1 mod p= a” =a mod p. If p|a, then a = 0 mod p so both
sides are 0 = 0 mod p. [ ]

Proof by induction.

Lemma 18 (Freshman’s Dream).

(x+y)P=aP+y? (modp) =m,y€Z, primep

Use the Binomial Theorem.

p—1
(x4 y)P = 2P +yP + Z (Z) ahyp=Fk
k=1

=0 mod p
We saw that () is divisible by p for 1 < k < p—1,s0
(z+y)P =2’ +y” (mod p)
O

Induction base case of a = 0 is obvious. Check to see if it holds for a + 1
assuming it holds for a
(a+1)P—(a+1)=d’+1—(a+1) (mod p)
a’ —a (mod p)
0 (mod p)
(a+1)P=(a+1) (mod p)

This is reversible (if holds for a, then also for a — 1), and so holds for all integers
by stepping up or down |



Proposition 19 (Inverses of elements mod m). If (a, m) = 1, then there is a unique
integer b mod m such that ab =1 mod m. This b is denoted by L or a=' mod m

Proof of Existence. Since (a,m) = 1 we know that az + my = 1 for some integers
z,y,and so ax =1 mod m. Setb = z. |

Proof of Uniqueness. If aby = 1 mod m and aby; = 1 mod m, then ab; = abs
mod m = mla(by — bs). Since (m,a) =1, m|by — bs = by = by mod m. [ |

Theorem 20 (Wilson’s Theorem). If p is a prime then (p — 1)! = —1 mod p

Proof. Assume that p is odd (trivial for p = 2).

Lemma 21. The congruence 2> = 1 mod p has only the solutions x = +1 mod p

Proof.

z2=1 modp
= plz? —1
=pllx —1)(z+1)
=plrt1
=r=41 modp

O

Note that z2 =1 mod p = (z,p) = 1 and x has inverse and z = z=! mod p

{1...p—1}is areduced residue system mod p. Pair up elements a with inverse

a”! mod p. Only singletons will be 1 and —1.

(p—1D!'=(ar-a7 ) (az-ay")... (ay ~a;1)(1)(—1) (mod p)

=-1 (mod p)
|
Wilson’s Theorem lets us solve congruence 2> = —1 mod p
Theorem 22. The congruence x> = —1 mod p is solvable if and only if p = 2 or

p=1 mod 4



Proof. p = 2 is easy. We'll show that there is no solution for p = 3 mod 4 by
contradiction. Assume z? = —1 mod p for some x coprime to p (p = 4k + 3).
Note that

p—1=4k+2=202k+1)

so (z2)2+1 = (—1)2*1 = —1 mod p. But also,

4k+2 -1

=P

() = ¢ 1 mod p

So1l=—1 mod p = p|2, which is impossible since p is an odd prime.
Ifp=1 mod 4:

(p—1)!'=-1 (mod p) by Wilson’s Theorem
(1)(2)...(p—1)=-1 (mod p)

(1.2...1’;1) (p;l...p—l> =1 (mod p)

T show that second factor
equals the first

p—1=(-1)1 (mod p)
p—2=(-1)2 (mod p)
PEL= (0P (modp)

(19‘;1)._.(1,_1)5(_1)”21 (12(?)) (mod p)

second factor T

is even since p = 1 mod 4, and so second factor equals the first factor, so

p—1
2
= (251)! solves 22 = —~1 mod pifp=1 mod 4. u

T

Theorem 23. There are infinitely many primes of form 4k + 1

Proof. As in Euclid’s proof, assume finitely many such primes p; ... p,. Con-
sider the positive integer

N =(2pipa...pa)° +1

N is an odd integer > 1, so it has an odd prime factor ¢ # p;, since each p;
divides N — 1. ¢|N = (2p1...pn)? = —1 mod ¢, so 2> = —1 mod ¢ has a
solution and so by theorem ¢ =1 mod 4, which contradicts ¢ # p;. |



(Definition) Congruence: A congruence (equation) is of the form a,z" +
ap—12" "t + a9 = 0 mod m where a, ...aq are integers. Solution of the
congruence are integers or residue classes mod m that satisfy the equation.

Eg. 2 — 2 =0 mod p. How many solutions? p.
Eg. 22 = —1 mod 5. Answers = 2, 3.
Eg. 72 = —1 mod 43. No solutions since 43 = 3 mod 4.

Eg. 22 =1 mod 15. Answers = +1,+4 mod 15.

Note: The number of solutions to a non-prime modulus can be larger than the
degree

(Definition) Linear Congruence: a congruence of degree 1 (axz = b mod m)

Theorem 24. Let g = (a,m). Then there is a solution to ax = b mod m if and only
if g|b. If it has solutions, then it has exactly g solutions mod m.

Proof. Suppose g 1 b. We want to show that the congruence doesn’t have a
solution. Suppose z is a solution = axy = b 4 mk for some integer k. Since
gla, glm, g divides axg — mk = b, which is a contradiction. Conversely, if g|b,
we want to show that solutions exist. We know g = az( + myp for integer o, yo.
If b = V' g, multiply by V' to get
b="Vg="0axe + myo
= a(b'zg) + m(b'yg)
= a(b/zo) =b (mod m)

and so z = b’z is a solution.

We need to show that there are exactly g solutions. We know that there is one
solution z, and the congruence says ax = b = ax; mod m.

a(r —x1) =0 (mod m)
a(x — x1) = mk for some integer k

g=(a,m)=a=dg, m=mg

So (a,m') =1,s0d'g(x—x1) = m'gk = a(x—x1) = m'k for some k. Som/|z—x1,
sox = z1 mod m’, so any solution of the congruence must be congruent to



mod m’ = m. So all the solutions are x1,z1 + m’,x1 +2m/, ..., 21 + (g — 1)m/.
They are all distinct, so they are all the solutions mod m. |
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