
Lecture 5 
Linear Congruences, Chinese Remainder Theorem, Algorithms 

Recap - linear congruence ax ≡ b mod m has solution if and only if g = (a, m) 
divides b. How do we find these solutions? 

Case 1: g = (a, m) = 1. Then invert a mod m to get x ≡ a−1b mod m. Al­
gorithmically, find ax0 + my0 = 1 with Euclidean Algorithm, then ax0 ≡ 1 
mod m so x0 = a−1, so x ≡ x0b = a−1b solves the congruence. (ax ≡ a(x0b) ≡ 
(ax0)b ≡ b mod m). Conclusion: There is a unique solution mod m. 

Case 2: g = (a, m) > 1. If g t b, there are no solutions. If g|b, write a = 
' 'a'g, b = b'g, m = m g so that ax ≡ b mod m ⇒ a x = b' mod m' so that 

'(a ,m') is now 1. The unique solution (found by Case 1) x mod m' also satisfied 
ax ≡ b mod m so that we have one solution mod m. We know any solution 
x̃ mod m must be congruent to x mod m', so x̃ must have form x + m'k for 
some k. As k goes from 0 through g − 1 we get the g distinct integers mod m: 

' 'x, x + m ,x + 2m . . . x + (g − 1)m', which all satisfy ax̃ ≡ b mod m because 

a(x + km') = ax + akm' 

= ax + a'gkm' 

= ax + m(a'k) 

≡ ax (mod m) 

≡ b (mod m) 

Conclusion: this congruence has g = (a, m) solutions mod m. 

Eg., 
35x ≡ 14 (mod 28) 

(35, 28) = g = 7. To solve, first divide through by 7 to get 5x ≡ 2 mod 4. 
Solution of x ≡ 2 mod 4 is x = 2, which will also satisfy original congru­

' 28ence. m = = 4 ⇒ all solutions mod 28 ≡ 2, 6, 10, 14, 18, 22, 26.7 

Simultaneous System of Congruences to Different Moduli: Given 

x ≡ a1 (mod m1) 

x ≡ a2 (mod m2) 

. . . 
x ≡ ak (mod mk) 

Does this system have a common solution? (Not always, eg., x ≡ 3 mod 8 and 
x ≡ 1 mod 12) In general, need some compatibility conditions. 
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Theorem 25 (Chinese Remainder Theorem). If the moduli are coprime in pairs (ie., 
(mi,mj ) = 1 for i = j), then the system has a unique solution mod m1m2 . . .mk. 

Proof of Uniqueness. Suppose there are two solutions x ≡ y ≡ a1 mod m1, x ≡ 
y ≡ a2 mod m2, etc. Then m1|(x − y), m2|(x − y), etc. Since m’s are relatively 
prime in pairs, their product m1m2 . . .mk divides x − y as well, so x ≡ y 
mod m1m2 . . .mk. So solution, if exists, must be unique mod m1m2 . . .mk. • 

Proof of Existence. Write solution as a linear combination of ai 

A1a1 + A2a2 + · · · + Akak 

Want to arrange so that mod ai all the Aj for j = i are ≡ 0 mod m, and Ai ≡ 1 
mod mi. Let 

N1 = m2m3 . . .mk 

N2 = m1m3 . . .mk 

. . . 
Ni = m1m2 . . .mi−1mi+1 . . .m k 

So (Ni,mi) = 1, since all the other m are coprime to mi. Let Hi equal the multi­
plicative inverse of Ni mod mi, and let Ai = HiNi. Then, Ai ≡ 0 mod mj for 
j = i and Ai ≡ 1 mod mi. So now let 

a = A1a1 + A2a2 + · · · + Akak 

= H1N1a1 + H2N2a2 + · · · + HkNkak 

Then if we take mod mi all the terms except ith term will vanish (since mi|Nj 

for j = i). So 

a ≡ HiNiai (mod mi) 

≡ ai (mod mi) 

• 

Eg. 

x ≡ 2 mod 3, N1 = 5 · 7 = 35 ≡ 2 mod 3, H1 = 2 

x ≡ 3 mod 5, N2 = 3 · 7 = 21 ≡ 1 mod 5, H2 = 1 

x ≡ 5 mod 7, N3 = 3 · 5 = 15 ≡ 1 mod 7, H3 = 1
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x = H1N1a1 + N2H2a2 + N3H3a3 (mod m1m2m3) 

= 2 · 35 · 2 + 1 · 21 · 3 + 1 · 15 · 5 (mod 105) 

= 278 (mod 105) 

≡ 68 (mod 105) 

Note: Assuming we have m1,m2 . . .mk that are relatively prime, the Chi­
nese Remainder Theorem says that any choice of a1 mod m1, a2 mod m2, etc. 
gives rise to particular x(a1, a2, . . . ak,m1, . . .mk) mod m1m2 . . .mk. Number 
of choices that we have is m1m2 . . .mk, which agrees with number of integers 
mod m1m2 . . .mk. 

Note: Now note that x(a1, a2, . . . ak,m1, . . .mk) is coprime to m1m2 . . .mk if 
and only if (ai,mi) = 1. 

 
•	 If x is coprime to mi then it is relatively coprime to each of them, so 

since x ≡ ai mod mi we’ll also have (ai,mi) = 1. 

•	 Conversely if (ai,mi) = 1 for all i, then since x ≡ ai mod mi, this implies  
that (xi,mi) = 1 holds for all i, so (x, mi) = 1 as well. 

 
What is the number of x coprime to mi? (by definition this is φ(m1m2 . . .mk)) 

(# of choices of a1) (# of choices of a2) . . . \   - \   -
φ(m1) φ(m1)

with each ai coprime to mi. This gives corollary that if mi coprime in pairs,   
φ( mi) = φ(mi). We can use this to understand φ(n) for any n. With mi 

coprime in pairs, 

e1 e2 ekn = p p . . . p 1 2 k 
e1 e2 ekm1 = p , m2 = p . . . mk = p1 2 k 

e1 e2 ekφ(n) = φ(p1 )φ(p2 ) . . . φ(pk ) 

All we need, then, is how to find φ(pe). 
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φ(p e) = # of {x|1 ≤ x ≤ p e and (x, p) = 1 and so (x, p e) = 1} 
e−1 = p e − p 

= p e−1(p − 1)  
1e = p 1 − 
p 

and so
e1−1 e2−1 ek −1φ(n) = p (p1 − 1)p (p2 − 1) . . . p (pk − 1)1 2 k      
e1 e2 ek 

1 1 1 
= p p . . . p 1 − 1 − . . . 1 −1 2 k p1 p2 pk  

1 
= n 1 − 

|
p 

p n

Numerical Calculations for Algorithms 

Want to do arithmetic modulo N (some large number). Benchmark = time to 
write down N , which is roughly the number of digits of N = c log N for some 
constant c. 

Addition is log N steps/time 
Multiplication is log2 N steps/time in the simplest way 

Karatsuba Multiplication This is a faster algorithm for multiplication (see 
http://en.wikipedia.org/wiki/Karatsuba_algorithm#Algorithm); 
reduces time to (log N)log 3/ log 2 

Multiplication can be further improved by using Fast Fourier Transforms to 
log Npoly(log log n). 

bExponentiation - we want to compute a mod N , with a at most N and b is 
also small (∼ N ). Most obvious way would be repeated multiplication for 
N log2 N , but better to use repeated squaring. Write b in binary as 

b = brbr−1 . . . b 0 

= 2rbr + 2r−1br−1 + · · · + b0 

212then compute a
0 
, a , . . . a2

r 
mod N by repeatedly squaring the previous one 

(at most log2 N for each). Then take    
0
 b0 1

 b1 2
 b2 

 br
2r2 2 2 a a a . . . a 

for a total of log b log2 N ∼ log3 N steps. 
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