Lecture 5
Linear Congruences, Chinese Remainder Theorem, Algorithms

Recap - linear congruence ax = b mod m has solution if and only if g = (a,m)
divides b. How do we find these solutions?

Case 1: g = (a,m) = 1. Then invert a mod m to get z = a~'b mod m. Al-
gorithmically, find axg + myo = 1 with Euclidean Algorithm, then azy = 1
mod m s0 zo = a~ !, 80 x = xob = a~'b solves the congruence. (ax = a(xob) =
(axp)b =b mod m). Conclusion: There is a unique solution mod m.

Case 2: ¢ = (a,m) > 1. If g 1 b, there are no solutions. If g|b, write a =
a'g,b = bgom = m'gsothatar = b mod m = a’z = b mod m’ so that
(a’,m’) is now 1. The unique solution (found by Case 1) x mod m' also satisfied
ar = b mod m so that we have one solution mod m. We know any solution
Z mod m must be congruent to « mod m/, so Z must have form x + m’k for
some k. As k goes from 0 through ¢g — 1 we get the ¢ distinct integers mod m:
z,x+m,x+2m' ...+ (g — 1)m/, which all satisfy aZ = b mod m because

a(z + km') = ax + akm’

= azx + o' gkm’
ax +m(a'k)
ar (mod m)
=b (mod m)

Conclusion: this congruence has g = (@, m) solutions mod m.

Eg.,
35z =14 (mod 28)

(35,28) = g = 7. To solve, first divide through by 7 to get 52 = 2 mod 4.
Solution of z = 2 mod 4 is « = 2, which will also satisfy original congru-
ence. m’ = % = 4 = all solutions mod 28 = 2, 6, 10, 14, 18, 22, 26.

Simultaneous System of Congruences to Different Moduli: Given

x=a; (modm)

x=ay (mod mo)

x =ar (mod my)

Does this system have a common solution? (Not always, eg., z =3 mod 8 and
z =1 mod 12) In general, need some compatibility conditions.



Theorem 25 (Chinese Remainder Theorem). If the moduli are coprime in pairs (ie.,
(mi,mj;) = 1for i # j), then the system has a unique solution mod myms . .. my.

Proof of Uniqueness. Suppose there are two solutions * =y = a1 mod my, z =
y = az mod my, etc. Then mq|(x — y), ma|(x — y), etc. Since m'’s are relatively
prime in pairs, their product mims ... my divides x — y as well, so z = y
mod mymsg ... my. So solution, if exists, must be unique mod myms ... my,. M

Proof of Existence. Write solution as a linear combination of a;

A1a1 + AQGQ + -4 Akak

Want to arrange so that mod «; all the A; for j # iare=0 mod m,and 4; =1
mod m;. Let

N1 =maoms...Mmg

N2:m1m3...mk

Ni =M1mo .. .MMy —1M41 ... Mk

So (N;, m;) = 1, since all the other m are coprime to m;. Let H; equal the multi-
plicative inverse of N; mod m;, and let A; = H;N;. Then, A; =0 mod m; for
j#iand A; =1 mod m;. So now let
a:A1a1+A2a2+~~+Akak
= HiNiai + HaNzaz + -+ - + HpNypag
Then if we take mod m; all the terms except ith term will vanish (since m;|N;
for j # i). So
a = H;N;a; (mod m;)

=a; (mod m;)

Eg.
r =2 mod 3, N1 =5-7=35=2 mod 3, Hy =2
r =3 mod 5, No=3-7=21=1 mod 5, Hy, =1
=5 mod?7, N3=3:-5=15=1 mod 7, Hs=1



x = HiN1a1 + NaHsas + N3sHzas (mod mymams)
=2.35.2+41-21-341-15-5 (mod 105)
=278 (mod 105)
=68 (mod 105)

Note: Assuming we have m,ms ... my that are relatively prime, the Chi-
nese Remainder Theorem says that any choice of a; mod my, az mod ms, etc.
gives rise to particular (a1, ag, . . . ag, m1,...my) mod mims...my. Number
of choices that we have is mims . .. my, which agrees with number of integers
mod mims ... my.

Note: Now note that z(a1,as,...ag,m1,...mg) is coprime to mims ... my if
and Ol’lly if (ai, mz) =1.
e If x is coprime to [[m; then it is relatively coprime to each of them, so
since ¢ = a; mod m; we'll also have (a;, m;) = 1.
o Conversely if (a;, m;) = 1 for all ¢, then since = a; mod m,, this implies

that (z;,m;) = 1 holds for all 4, so (z, [[m;) = 1 as well.

What is the number of = coprime to [[ m;? (by definition this is ¢(mims ... my))

(# of choices of a1) (# of choices of as) . ..

¢(ma) ¢(m1)

with each a; coprime to m;. This gives corollary that if m; coprime in pairs,
o(I1m:) = [ #(m;). We can use this to understand ¢(n) for any n. With m;
coprime in pairs,

€ (& (&3

n=7p'py’...p,
€ € €L
m1:p117 m2=p22... mk:pkk

¢(n) = o(p1" )o(p3°) - - - D(p")

All we need, then, is how to find ¢(p°®).



o(p°) =#of {z|1 <z < p®and (z,p) =1and so (z,p°) = 1}
_ pe o pefl
=p"'(p—1)
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Numerical Calculations for Algorithms

Want to do arithmetic modulo N (some large number). Benchmark = time to
write down NN, which is roughly the number of digits of N = clog N for some
constant c.

Addition is log N stegs /time
Multiplication is log” IV steps/time in the simplest way

Karatsuba Multiplication This is a faster algorithm for multiplication (see
http://en.wikipedia.org/wiki/Karatsuba_algorithm#Algorithm);
reduces time to (log N)log3/1og2

Multiplication can be further improved by using Fast Fourier Transforms to
log Npoly(loglogn).

Exponentiation - we want to compute ® mod N, with a at most N and b is
also small (~ NN). Most obvious way would be repeated multiplication for
Nlog® N, but better to use repeated squaring. Write b in binary as

b="b,br_1...b9
=2"b, + 27"71[)7«_1 + -+ b
then compute a2’, a2 ,...a2" mod N by repeatedly squaring the previous one

(at most log? N for each). Then take

()" ()" () ()"

for a total of log blog? N ~ log® N steps.


http://en.wikipedia.org/wiki/Karatsuba_algorithm#Algorithm
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