Lecture 7
Congruences mod Primes, Order, Primitive Roots

Continuation of Proof of Hensel’s Lemma. By lemma,
fla+tp’) = fa) + 1/ f'(a) (mod p'*")
Now we want to have the right hand side = 0 mod p’*'.

fla) +tp’ f'(a) =0 mod p’* < tf'(a) + % =0 modp

this has a unique solution

== (3 i) o

Direct formula - start with solution a of f(z) = 0 mod p, and we want a solution
mod p*. Set a; = a.

aj+1 = aj — f(a;)f'(a) (mod p
where f/(a) is an integer chosen once at the beginning of the algorithm, which

only matters mod p. It’s chosen such that f/(a)f’(a) = 1 mod p. Then f(a;) =0
mod p’ for j > 1 aslong as f’(a) # 0 mod p.

j+1)

Eg. Solve the congruence 2% = —1 mod 125. (f(z) = 2% + 1, f'(z) = 2z). Mod
5:22 = —1 mod 5,s0seta = 2. f'(a) = 4mod 5, so can choose f'(a) = —1.

a; =2 (mod 5)

az = a1 — f(a1)f'(a) (mod 25)
=2—(5)(-1) (mod 25)
=7 (mod 25)

az = az — f(az)f'(a) (mod 125)
=7—-(50)(—1) (mod 125)
=57 (mod 125)

Congruences to prime modulus: Assume that all the coefficients of f(z) =
anx"™ + ap_12" "1 + ag are reduced mod p and also that a,, 0 mod p. By
dividing out by a,,, can assume that f(z) is monic (ie., highest coefficient is 1).
We can also assume degree n of f is less than p. If not, can divide f by 2? — x to
get

()
(a)

so roots of f(z) mod p are the same as the roots of 7(z) mod p.

f (z)(zP — x) + r(z) with deg(r(z)) <p
f (a)(a? —a) +r(a) =7(a) mod p by Fermat

e



Theorem 28. A congruence f(x) = 0 mod p of degree n has at most n solutions.

Proof. (imitates proof that polynomial of degree n has at most n complex roots)

Induction on n: congruences of degree 0 and 1 have 0 and 1 solutions, trivially.
Assume that it holds for degrees < n (n > 2)

If it has no roots, then we’re done. Otherwise, suppose it does have a root
a. Dividing f(x) by = — a, we get g(xr) € Z[z] and a constant r such that
f(z) = g(z)(z — o) + r. Now if we plug in a we get f(a) = (a —a)g(a) +r =1,
which means that f(a) = r and f(z) = (v — )g(a) + f(a).

We know that f(a) = 0 mod p. If 8 is any other root of f(z) then we plug 3 into

the equation to get f(3) = (8 — a)g(B) + f(«). Mod p, f(B) = (8 — a)g(5) mod
p,500 = (8 — a)g(B). We also assume that 5 # «, so g(8) = 0 mod p.

So 8 is a root of ¢g(z) as a solution of g(z) = 0 mod p. We know that g(x) has
degree n — 1, so by induction hypothesis g(x) = 0 mod p has at most n — 1
solutions, which by including « gives f(x) at most n solutions. |

Corollary 29. If a, " + a,_12" "' + -+ + ag = 0 mod p has more than n solutions,
then all a; = 0 mod p.

Theorem 30. Let f(z) = 2" + ap_12"" 1 + -+ + ag. Then f(x) = 0 mod p has
exactly n distinct solutions if and only if f(x) divides xP — p mod p. le., there exists
g(x) € Z[x] such that f(x)g(x) = xP — x mod p as polynomials (all coefficients mod
p)

Proof. Suppose f(z) has n solutions. Then n < p because only p possible roots
mod p (ie., deg(f) < deg(zP — z)). Divide 2P — z by f(z) to get

af —x = f()g(x) +r(x), deg(r) < deg(f) =n
Now note, if a is a root of f(z) mod p then plug in to get
o’ —a = f(a)g(a) +r(a)
Og(a) +r(a)
=r(a) modp

so a must be a solution to r(z) = 0 mod p. Since f(x) has distinct roots, we see
that r(z) = 0 mod p has n distinct solutions. But deg(r) < n. So by corollary
we must have 7(z) = 0 mod p as a polynomial (each coefficient is 0 mod p.) Ie.,
2P — p = f(z)g(x) mod p, and so f(x) divides =P — x.

Now suppose f(z)|z? — z mod p. Write 2P — z = f(z)g(z) mod p, where f(z)
is a monic of degree n and g(x) is a monic of degree p — n. We want to show
that f(z) has n distinct solutions.



By previous theorem, g(x) has at most p — nrootsmod p. If « € 0,1,...p — 11is
not a root of g(z) mod p then o — o = f(«)g(e) mod p, which by Fermat = 0.
Since g(a) # 0 mod p, f(«) = 0 mod p. So since there are at least p — (p — n)
such «, we see that f(x) has at least n distinct roots mod p. By the theorem, f(z)
has at most n roots mod p = f(x) has exactly n distinct roots mod p. |

Corollary 31. Ifd|p — 1 then x% = 1 mod p has exactly d distinct solutions mod p.

Proof. d|p —1,s0 2?71 — 1|2P~! — 1 as polynomials. p — 1 = kd, so 2*¢ — 1 =
(2% —1)(z*=De... 4 1). Sox? — 1|z (2P~ — 1) = 2P — 2. So has d solutions. M

Corollary 32. Another proof of Wilson’s Theorem

Proof. Let pbe an odd prime. Let f(z) = 2(z —1)(z —2)...(x —p+1). This has
deg p and p solutions mod p, so it must divide 2 — = mod p. Both polynomials
are monic of the same degree (p), so must be equal mod p.

z(z—1)...(x—(p—-1))=2P —z modp
Coefficient of z on the LHS is just (—1)(=2)...(=(p—1)) = (-1)P"1(p—1)! =
(p — 1)!'since pis odd, and so (p — 1)! = —1 mod p (coefficient on RHS). |
This tells us much more as well-eg., 1+2+---+p—1=0mod p forp > 3,
and (1)(2) + (1)) +...(2)(3)---+ (p—1)(p—2) =0mod p for p > 5.

If we have a product f(z) = (zr — 1) ... (z — o) then f(z) = 2" — oy2" ! +
022" 2 + ... (=1)"0,. 0; are elementary symmetric polynomials.

0'125 Q5
O'QZE ;0

i<J

o = Z(all products of k roots ;)

Question - We know by Euler that if (n,35) = 1, then n?3%) = n?* = 1 mod
35. Can 24 be replaced by something smaller? Ie., what’s the smallest positive
integer N such that if (n,35) = 1 then n’¥ = 1 mod 35.

(Definition) Order: If (a,m) = 1 and h is the smallest positive integer such

that " = 1 mod m then say & is the order of a mod m. Written as h = ord,, (a).

Lemma 33. Let h = ord,,(a). The set of integers k such that a* = 1 mod m is exactly
the set of multiples of h.



Proof. a™ = (a")” = 1" = 1 mod m. Suppose we have k such that a* = 1 mod
m. Want to show h|k. Write k = hq + 7 where 0 < 7 < h. 1 = a* = "t =
a"q” = 1a” = a” mod m, so a” = 1 mod m. But r < h. So if r > 0, contradicts
minimality of h, which means that r = 0, and & is multiple of h. n

Lemma 34. If h = ord,,(a) then a* has order -%:~ mod m.

(k1)
Proof.
a® =1 modm
< hlkj
o h | ko
(%) (. 1)’
“ h |7
(k)"
So smallest such positive j = (h}fk). |

Lemma 35. If a has order h mod m and b has order k mod m, and (h, k) = 1, then ab
has order hk mod m.

Proof. We know
(ab)hk = (ah)k(bk)h

=1F1"
=1 modm
Conversely suppose that » = ord,, (ab).
(ab)" =1 mod m
(ab)™ =1 mod m

(@)™ =1 mod m

" =1 mod m

so k|rh = k|r (since (k,h) = 1), and similarly h|r. So hk|r, and so hk =
ord,, (ab). |

(Definition) Primitive Root: If a has order ¢(m) mod m, we say that a is a
primitive root mod m.

Eg. mod 7:



1 hasorder 1

2 hasorder 3 (23 =1mod7)
3 hasorder 6 v (4(7)=6)

4 hasorder 3

5 hasorder 6 v (¢(7)=6)

6 hasorder 2

Lemma 36. Let p be prime and suppose ¢°||p — 1 for some other prime q. Then there’s
an element mod p of order ¢°.

Assuming Lemma...
€1 €2

p—1=qi'q*...q"
Lemma says that 3 g; with ord,(g1) = ¢7*, g2 with ord,(g2) = ¢52, etc. Set

g9 = 9192 . ..gr. So by previous lemma above, g has order ¢i'¢5*...¢5" =p—1

because all g; are coprime in pairs. p — 1 = ¢(p), so g is a primitive root mod p.

Proof. Consider solutions of 2% = 1 mod p. Because ¢°|p— 1, 29 — 1 has exactly
q° roots mod p. If « is any such root, then ord, (a) must divide ¢°.

So if it’s not equal to ¢¢, it must divide ¢°~*. Then a would have to be root of
29" — 1 = 0 mod p, which has exactly ¢°~! solutions. Since ¢¢ — ¢°~! > 0,
there exists a such that ord, (o) = ¢°. |
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