Lecture 7

Congruences mod Primes, Order, Primitive Roots

Continuation of Proof of Hensel's Lemma. By lemma,

$$f(a+tp^j) \equiv f(a) + tp^j f'(a) \pmod{p^{j+1}}$$

Now we want to have the right hand side $\equiv 0 \mod p^{j+1}$.

$$f(a) + tp^j f'(a) \equiv 0 \mod p^{j+1} \leftrightarrow tf'(a) + \frac{f(a)}{p^j} \equiv 0 \mod p$$

this has a unique solution

$$t \equiv -\left(\frac{f(a)}{p^j} \frac{1}{f'(a)}\right) \mod p$$

Direct formula - start with solution a of $f(x) \equiv 0 \mod p$, and we want a solution mod p^* . Set $a_1 = a$.

$$a_{j+1} = a_j - f(a_j)\overline{f'(a)} \pmod{p^{j+1}}$$

where $\overline{f'(a)}$ is an integer chosen once at the beginning of the algorithm, which only matters mod p. It's chosen such that $\overline{f'(a)}f'(a) \equiv 1 \mod p$. Then $f(a_j) \equiv 0 \mod p^j$ for $j \geq 1$ as long as $f'(a) \not\equiv 0 \mod p$.

Eg. Solve the congruence $x^2 \equiv -1 \mod 125$. $(f(x) = x^2 + 1, f'(x) = 2x)$. Mod 5: $2^2 \equiv -1 \mod 5$, so set a = 2. $f'(a) \equiv 4 \mod 5$, so can choose $\overline{f'(a)} = -1$.

$$a_1 = 2 \pmod{5}$$

$$a_2 = a_1 - f(a_1)\overline{f'(a)} \pmod{25}$$

$$= 2 - (5)(-1) \pmod{25}$$

$$= 7 \pmod{25}$$

$$a_3 = a_2 - f(a_2)\overline{f'(a)} \pmod{125}$$

$$= 7 - (50)(-1) \pmod{125}$$

$$= 57 \pmod{125}$$

Congruences to prime modulus: Assume that all the coefficients of $f(x) = a_n x^n + a_{n-1} x^{n-1} \cdots + a_0$ are reduced mod p and also that $a_n \not\equiv 0 \bmod p$. By dividing out by a_n , can assume that f(x) is monic (ie., highest coefficient is 1). We can also assume degree n of f is less than p. If not, can divide f by $x^p - x$ to get

$$f(x) = g(x)(x^p - x) + r(x) \text{ with } \deg(r(x)) < p$$

$$f(a) = g(a)(a^p - a) + r(a) \equiv r(a) \mod p \text{ by Fermat}$$

so roots of f(x) mod p are the same as the roots of r(x) mod p.

Theorem 28. A congruence $f(x) \equiv 0 \mod p$ of degree n has at most n solutions.

Proof. (imitates proof that polynomial of degree n has at most n complex roots)

Induction on n: congruences of degree 0 and 1 have 0 and 1 solutions, trivially. Assume that it holds for degrees $< n \ (n \ge 2)$

If it has no roots, then we're done. Otherwise, suppose it does have a root α . Dividing f(x) by $x-\alpha$, we get $g(x)\in\mathbb{Z}[x]$ and a constant r such that $f(x)=g(x)(x-\alpha)+r$. Now if we plug in α we get $f(\alpha)=(\alpha-\alpha)g(\alpha)+r=r$, which means that $f(\alpha)=r$ and $f(x)=(x-\alpha)g(\alpha)+f(\alpha)$.

We know that $f(\alpha) \equiv 0 \mod p$. If β is any other root of f(x) then we plug β into the equation to get $f(\beta) = (\beta - \alpha)g(\beta) + f(\alpha)$. Mod p, $f(\beta) \equiv (\beta - \alpha)g(\beta)$ mod p, so $0 \equiv (\beta - \alpha)g(\beta)$. We also assume that $\beta \not\equiv \alpha$, so $g(\beta) \equiv 0 \mod p$.

So β is a root of g(x) as a solution of $g(x) \equiv 0 \mod p$. We know that g(x) has degree n-1, so by induction hypothesis $g(x) \equiv 0 \mod p$ has at most n-1 solutions, which by including α gives f(x) at most n solutions.

Corollary 29. If $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \equiv 0 \mod p$ has more than n solutions, then all $a_i \equiv 0 \mod p$.

Theorem 30. Let $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$. Then $f(x) \equiv 0 \mod p$ has exactly n distinct solutions if and only if f(x) divides $x^p - p \mod p$. Ie., there exists $g(x) \in \mathbb{Z}[x]$ such that $f(x)g(x) = x^p - x \mod p$ as polynomials (all coefficients mod p)

Proof. Suppose f(x) has n solutions. Then $n \le p$ because only p possible roots mod p (ie., $\deg(f) \le \deg(x^p - x)$). Divide $x^p - x$ by f(x) to get

$$x^p - x = f(x)g(x) + r(x), \quad \deg(r) < \deg(f) = n$$

Now note, if α is a root of f(x) mod p then plug in to get

$$\alpha^{p} - \alpha = f(\alpha)g(\alpha) + r(\alpha)$$

$$\equiv 0g(\alpha) + r(\alpha)$$

$$\equiv r(\alpha) \mod p$$

so α must be a solution to $r(x) \equiv 0 \bmod p$. Since f(x) has distinct roots, we see that $r(x) \equiv 0 \bmod p$ has n distinct solutions. But $\deg(r) < n$. So by corollary we must have $r(x) \equiv 0 \bmod p$ as a polynomial (each coefficient is $0 \bmod p$.) Ie., $x^p - p = f(x)g(x) \bmod p$, and so f(x) divides $x^p - x$.

Now suppose $f(x)|x^p-x \bmod p$. Write $x^p-x\equiv f(x)g(x) \bmod p$, where f(x) is a monic of degree n and g(x) is a monic of degree p-n. We want to show that f(x) has n distinct solutions.

By previous theorem, g(x) has at most p-n roots mod p. If $\alpha \in 0, 1, \ldots p-1$ is not a root of g(x) mod p then $\alpha^p - \alpha \equiv f(\alpha)g(\alpha)$ mod p, which by Fermat $\equiv 0$. Since $g(\alpha) \not\equiv 0$ mod p, $f(\alpha) \equiv 0$ mod p. So since there are at least p-(p-n) such α , we see that f(x) has at least n distinct roots mod p. By the theorem, f(x) has at most n roots mod $p \Rightarrow f(x)$ has exactly n distinct roots mod p.

Corollary 31. If d|p-1 then $x^d \equiv 1 \mod p$ has exactly d distinct solutions mod p.

Proof.
$$d|p-1$$
, so $x^{d-1}-1|x^{p-1}-1$ as polynomials. $p-1=kd$, so $x^{kd}-1=(x^d-1)(x^{(k-1)d}\cdots+1)$. So $x^d-1|x(x^{p-1}-1)=x^p-x$. So has d solutions.

Corollary 32. Another proof of Wilson's Theorem

Proof. Let p be an odd prime. Let $f(x) = x(x-1)(x-2)\dots(x-p+1)$. This has $\deg p$ and p solutions mod p, so it must divide $x^p - x \mod p$. Both polynomials are monic of the same degree (p), so must be equal mod p.

$$x(x-1)\dots(x-(p-1)) \equiv x^p - x \mod p$$

Coefficient of x on the LHS is just $(-1)(-2)\dots(-(p-1))=(-1)^{p-1}(p-1)!=(p-1)!$ since p is odd, and so $(p-1)!\equiv -1 \mod p$ (coefficient on RHS).

This tells us much more as well - eg., $1 + 2 + \cdots + p - 1 \equiv 0 \mod p$ for $p \ge 3$, and $(1)(2) + (1)(3) + \cdots + (2)(3) + \cdots + (p-1)(p-2) \equiv 0 \mod p$ for $p \ge 5$.

If we have a product $f(x) = (x - \alpha_1) \dots (x - \alpha_n)$ then $f(x) = x^n - \sigma_1 x^{n-1} + \sigma_2 x^{n-2} + \dots (-1)^n \sigma_n$. σ_i are elementary symmetric polynomials.

$$\sigma_1 = \sum \alpha_i$$

$$\sigma_2 = \sum_{i < j} \alpha_i \alpha_j$$

$$\sigma_k = \sum (\text{all products of } k \text{ roots } \alpha_i)$$

Question - We know by Euler that if (n,35)=1, then $n^{\phi(35)}=n^{24}\equiv 1 \mod 35$. Can 24 be replaced by something smaller? Ie., what's the smallest positive integer N such that if (n,35)=1 then $n^N\equiv 1 \mod 35$.

(Definition) Order: If (a, m) = 1 and h is the smallest positive integer such that $a^h \equiv 1 \mod m$ then say h is the **order** of $a \mod m$. Written as $h = \operatorname{ord}_m(a)$.

Lemma 33. Let $h = \operatorname{ord}_m(a)$. The set of integers k such that $a^k \equiv 1 \mod m$ is exactly the set of multiples of h.

Proof. $a^{rh} \equiv (a^h)^r \equiv 1^r \equiv 1 \mod m$. Suppose we have k such that $a^k \equiv 1 \mod m$. Want to show h|k. Write k = hq + r where $0 \le r < h$. $1 \equiv a^k = a^{hq+r} = a^{hq}a^r \equiv 1a^r \equiv a^r \mod m$, so $a^r \equiv 1 \mod m$. But r < h. So if r > 0, contradicts minimality of h, which means that r = 0, and k is multiple of h.

Lemma 34. If $h = \operatorname{ord}_m(a)$ then a^k has order $\frac{k}{(k.h)}$ mod m.

Proof.

$$a^{kj} \equiv 1 \mod m$$

$$\leftrightarrow h|kj$$

$$\leftrightarrow \frac{h}{(h,k)}|\frac{k}{(h,k)}j$$

$$\leftrightarrow \frac{h}{(h,k)}|j$$

So smallest such positive $j = \frac{h}{(h,k)}$.

Lemma 35. If a has order h mod m and b has order k mod m, and (h, k) = 1, then ab has order hk mod m.

Proof. We know

$$(ab)^{hk} \equiv (a^h)^k (b^k)^h$$
$$\equiv 1^k 1^h$$
$$\equiv 1 \mod m$$

Conversely suppose that $r = \operatorname{ord}_m(ab)$.

$$(ab)^r \equiv 1 \mod m$$

 $(ab)^{rh} \equiv 1 \mod m$
 $(a^h)^r b^{rh} \equiv 1 \mod m$
 $b^{rh} \equiv 1 \mod m$

so $k|rh \Rightarrow k|r$ (since (k,h)=1), and similarly h|r. So hk|r, and so $hk=\operatorname{ord}_m(ab)$.

(Definition) Primitive Root: If a has order $\phi(m) \mod m$, we say that a is a **primitive root** mod m.

Eg. mod 7:

Lemma 36. Let p be prime and suppose $q^e||p-1$ for some other prime q. Then there's an element mod p of order q^e .

Assuming Lemma...

$$p - 1 = q_1^{e_1} q_2^{e_2} \dots q_r^{e_r}$$

Lemma says that $\exists g_1$ with $\operatorname{ord}_p(g_1)=q_1^{e_1}$, g_2 with $\operatorname{ord}_p(g_2)=q_2^{e_2}$, etc. Set $g=g_1g_2\ldots g_r$. So by previous lemma above, g has order $q_1^{e_1}q_2^{e_2}\ldots q_r^{e_r}=p-1$ because all q_i are coprime in pairs. $p-1=\phi(p)$, so g is a primitive root mod p.

Proof. Consider solutions of $x^{q^e} \equiv 1 \mod p$. Because $q^e | p - 1$, $x^{q^e} - 1$ has exactly q^e roots mod p. If α is any such root, then $\operatorname{ord}_p(\alpha)$ must divide q^e .

So if it's not equal to q^e , it must divide q^{e-1} . Then α would have to be root of $x^{q^{e-1}}-1\equiv 0 \mod p$, which has exactly q^{e-1} solutions. Since $q^e-q^{e-1}>0$, there exists α such that $\operatorname{ord}_p(\alpha)=q^e$.

MIT OpenCourseWare http://ocw.mit.edu

18.781 Theory of Numbers Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.