Lecture 8
Primitive Roots (Prime Powers), Index Calculus

Recap - if prime p, then there’s a primitive root g mod p and it’s order mod p
€1 €2

isp—1=1¢q7"q5"...q:". We showed that there are integers g; mod p with order

exactly ¢;* (counting number of solutions to 2% —1=0mod p). Set g = I1g:-
has order [[¢;" =p— 1.

Number of primitive roots - suppose that m is an integer such that there is a
primitive root ¢ mod m. How many primitive roots mod m are there?

We want the order to be exactly ¢(m). If we look at the integers 1, g, g2,
...g®" =1 these are all coprime to m and distinct mod m. If we had ¢* = ¢’
mod m (0 < i < j < ¢(m) — 1), then we’d have ¢/~! = 1 mod m with
0 < j —i < ¢(m), contradicting the fact that g is a primitive root.

Since there are ¢(m) of these integers, they must be all the reduced residue
classes mod m (in particular if m = p, a prime, then {1, 2, ... p—1} is a relabeling
of {1,g,...97~2} mod p). Suppose that a is a primitive root mod m, then a = g*
mod m. Recall that order of ¢* is

ord(g) _ _ ¢(m)

(k,ord(g)) (K, ¢(m))

So only way for the order to be exactly ¢(m) is for k to be coprime to ¢(m). Ie.,
the number of primitive roots mod m is exactly ¢(¢(m)) - if there’s at least one.
In particular, if m = a prime, then number of primitive roots is ¢(p — 1).

Conjecture 37 (Artin’s Conjecture). Let a be a natural number, which is not a square.
Then there are infinitely many primes p for which a is a primite root mod p.

This is an open question. Hooley proved this conditional on GRH, and Heath-
Brown showed that if a is a prime, then there are at most 2 values of a which
fail the conjecture

(Definition) Discrete Log: Say pis a prime, and g is a primitive root mod p (ie.,
1,9,9%...gP~? are all the nonzero residue classes mod p). Say we have a # 0
mod p. We know a = ¢* for some k (0 < k < p — 2) - k is called the index or the
discrete log of a to the base g mod p. This is a computationally hard problem,
and is also used in cryptography.

Index Calculus - Let’s say we're trying to solve a congruence z¢ = 1 mod p.
Any z which satisfied this congruence is coprime to p. So if ¢ is a primitive root



mod p, we can write = g* mod p. New variable is now k:

=1 modp<—>gkdz

+— p—1=ord(g) divides kd
p—1 . d
s ——  divides ——k
(d,p—1) (d,p—1)
— M divides k
(dup - 1)
p=1)

So set of solutions for k is exactly the set of multiples of (fi >—1) (remember £ is

1 modp

only modulo p —1). So we can get all the solutions z by raising g to the exponent
k, where 0 < k < p — 1is a multiple of %. The number of solutions is

)

p—1)
1 = dp-1)
(d,p—l)

Similarly, if we're trying to solve the congruence z? = a mod p (a # 0 mod p),
we can write ¢ = ¢' mod p so if = ¢* as before then ¢*? = ¢! mod p. This
means that g**~! = 1 mod p <+ p — 1|kd — | +> kd = I mod p — 1 (k is variable),
which has a solution iff (d, p — 1) divides I, in which case it has exactly (d,p — 1)
solutions.

Note:
l(p—1)
(dvp - 1)

—1
+—¢@ro =1 modp

(d,p—1) divides | «+— p — 1 divides

p—1
+—a@r=D =1 modp

Theorem 38. There’s a primitive root mod m iff m = 1,2, 4, p°, or 2p° (where p is an
odd prime). Let’s assume that p is an odd prime, and e > 2. Want to show that there’s a
primitive root mod p°.

Part 1 - There’s a primitive root mod p?

Proof. Choose g to be a primitive root mod p, and use Hensel’s Lemma to show
there’s a primitive root mod p? of the form g+tp for some 0 < ¢t < p—1. We know
(g +tp,p) = 1since pt g and pltp. ord,z(g + tp) must divide ¢(p?) = p(p — 1).

On the other hand, if (g + tp)* = 1 mod p? then (g + tp)* = 1 mod p & ¢* =
mod p & p — 1]k.

So p — 1 divides ord, (g +tp). Since ord, (g + tp) is a multiple of p — 1 and divides
p(p — 1), it’s either equal to p — 1 or equal to p(p — 1) = ¢(p?). We'll show that
there’s exactly one value of ¢ for which the former happens.



Since there are p possible values of ¢(0 < t < p — 1), any of these remaining ones
give a g + tp which is a primitive root mod p?. Consider f(z) = 2P~! — 1: mod
p it has the root g. Since f'(x) = (p — 1)z~ 2 and f'(g9) = (p — 1)g?~2 £ 0 mod p,
by Hensel’s Lemma there is a unique lift g + tp of g mod p? satisfying zF~! =1
mod p?. This is the unique lift for which order is p — 1 mod p?. This proves that
there’s a primitive root mod p?. O

Part 2 - Let g be a primitive root mod p?. Then g is a primitive root mod p° for
every e > 2.

Proof. Since ord,.(g) divides ¢(p®) = p°~!(p—1) and also that p— 1| ord,(g) (as
in proof of previous part), ord,. (g) must be p*(p— 1) for some 0 < k < e — 1. We
want to show that k¥ = e — 1. To see that, it’s enough to show that gpefz(p_l) %1
mod p°.

We'll show it by induction (base case is e = 2). gP~* # 1 mod p? is true because
g is a primitive root mod p?, so order = p(p — 1). So say we know it for e.

We know that ¢(p°~!) = p*2(p — 1). So ¢*®) = 1 mod p°~* assuming that
¢?@®"") % 1 mod p°. In other words g®®" ") = 1+ bpe~! with p 1 b. Need to
show it for e + 1 - ie., g®?") % 1 mod pc*1.

We know that g?** (=1 = 1 4 pp°~1. Raising to power p we get
gp"_l(pfl) = (1+bp= )P
=1+pbp* '+ (‘g) (bp 1) + (2) (bpe™1)? + ...
=1+0bp° mod pT!

(because for e > 2,3e — 3 > e+ 1 and p|(?) so (?)b?p?¢—2 divisible by p?*~! and
2 2 y
% —1>e+1).

So g*" " (»=1) =1 4 bp® mod p°+* with p { b, which # 1 mod p=*. Completes
the induction. O

Main Proof. Check 1, 2, 4 directly. p odd, m = p® proved. m = 2p° (p odd) -
o(m) = ¢(2)¢(p°®) = ¢(p°). Let g be a primitive root mod p°. If g is odd, itis a
primitive root mod m. If not odd, then add p° to it.

Now show that nothing else works: otherwise, if n = mm’ with m and m’
coprime and m, m’ > 2, we'll show there does not exist a primitive root mod m.
By hypothesis (m, m’ > 2) we know ¢(m) and ¢(m') are even. So for (a,n) =1,



we have (a,m) = 1 = (a,m’). So a®™ =1 mod m and a?(™) = 1 mod m/. So

a®m)e(m’)/2 — (a¢(M))¢(m')/2
=1 modm

a®mem/2 = 1 mod m’

Similarly so, a®(™?(")/2 =1 mod n

but ¢(n) = ¢(m)e(m’) so ord,, (a) < ¢(n). So a can’t be a primitive root mod n.

Only remaining candidate is n = 2* for k > 3. No primitive root mod 8 since
odd? = 1 mod 8 (and ¢(8) = 4). So if a is odd, a® = 1 + 8k. Show by induction

that a2~ = 1 mod 2* (k > 3). Since #(2%) = 2F~1, we see there does not exist a
primitive root mod 2*.
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