Lecture 9
Quadratic Residues, Quadratic Reciprocity

Quadratic Congruence - Consider congruence az® +bx 4+ ¢ =0 mod p, with
a # 0 mod p. This can be reduced to x? + ax + b = 0, if we assume that p is
odd (2 is trivial case). We can now complete the square to get

2

a\?2 a
(x+§) +b_Z:0 mod p

So we may as well start with 2> = a mod p

If @ = 0 mod p, then z = 0 is the only solution. Otherwise, there are either
no solutions, or exactly two solutions (if ¥* = @ mod p, then z = +b mod p).
(2 =a=b*> mod p = plz? —b*> = p|(x —b)(x+b) =z =bor —b mod p). We
want to know when there are 0 or 2 solutions.

(Definition) Quadratic Residue: Let p be an odd prime, a # 0 mod p. We
say that a is a quadratic residue mod p if a is a square mod p (it is a quadratic
non-residue otherwise).

Lemma 39. Let a # 0 mod p. Then a is a quadratic residuemod p iff T =1
mod p

Proof. By FLT, a’~' =1 mod p and p — 1 is even. This follows from index
calculus. Alternatively, let’s see it directly

p—1

2 -
(aT) =1 modp:>aTIE:|:1 mod p

Let g be a primitive root mod p. {1,9,¢%...¢?72} = {1,2,...p — 1} mod p.
Then a = ¢g* mod p for some k. With that a = ¢"*®=1™ mod p so k’s only
defined mod p — 1. In particular, since p — 1 is even, so we know £ is even or
odd doesn’t depend on whether we shift by a multiple of p — 1. (ie., k is well
defined mod 2).

We know that a is quadratic residue mod p iff k is even (if k = 2l then a = g* =

(¢")? mod p). Conversely if a = b?> mod p and b = g' mod p we get a = g%
mod p, so k is even.

Note: this shows that half of residue class mod p are quadratic residues, and
- p=1 (p—
half are quadratic nonresidues. Now look at a'T = (¢%) = = ng 2 mod .

k=1 mod piff p—1 = ord, g divides @ iff (p — 1)\@ ~ 2k aisa
quadratic residue. |




(Definition) Legendre Symbol:

(a> B {1 if a is a quadratic residue mod p
p

—1 if ais a quadratic non-residue mod p

Defined for odd prime p, when (a,p) = 1. (For convenience and clarity, written

(alp))-

We just showed that (a|p) = a" mod p.
Remark 1. This formula shows us that (a|p)(blp) = (ab|p).

LHS =" b"7 = (ab)"> mod p=RHS mod p
and since both sides are £1 mod p, which is an odd prime, they must be equal
Similarly, (a|p) = (a|p)* =1
Eg.
(—4]79) = (—1-22|79) = (=1]79)(2|79)* = (-1|79) = (-1)* = —1
Also, 79 isnot 1 mod 4 so —1 is quadratic non-residue.
We'll work toward quadratic reciprocity relating (p|q) to (¢|p). We'll do Gauss's

3rd proof.

Lemma 40 (Gauss Lemma). Let p be an odd prime, and a # 0 mod p. For any
integer x, let x,, be the residue of x mod p which has the smallest absolute value.
(Divide x by p, get some remainder 0 < b < p. Ifb > g, let x, = b, ifb >
B, let xp, be b — p. ie., =5 < x, < L) Let n be the number of integers among
(@)p, (2a)p, (3a)p . .. ((%)a)p which are negative. Then (a|p) = (—1)".

Proof. (Similar to proof of Fermat'’s little Theorem)

We claim first that if 1 < k # | < 2% then (ka), # £(la),. Suppose not true:
(ka), = £(la),. Then, we'd have

ka=4la modp= (kFl)a=0 modp=kFI=0 modp

This is impossible because 2 < k+ I/ <p—1land - <k -l < fandk -1 #0
(no multiple of p possible).

So the numbers |(ka),| fork =1... 1’2;1 are all distinct mod p (there’s % of



them) and so must be the integers {1,3... 25} in some order.
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where the second step follows from the fact that exactly n of the numbers (ka),
are < 0. n

Theorem 41. If p is an odd prime, and (a,p) = 1, then if a is odd, we have (a|b) =
(—1)" where t = ngz_ll)/? {%J Also, (2|p) = (—1)®*~1/8

n

Proof. We'll use the Gauss Lemma. Note that we're only interested in (—1)".
We only care about n mod 2.

We have, for every k between 1 and 2+

_ | ka . 0 if (ka), >0 o
_{pJ+|(k)p|+{1 £ (ka) d?2

Sum all of these congruences mod 2



S k= Y

k=1 k=1
(p—1)/2 (p—1)/2

Z ka=a Z k
k=1 k=1

(p—1)/2 (p—1)/2 ka (p—1)/2
{ J + |(ka)p| +n mod 2

p k=1

Now > |(a),|. Since {|alp, - . ., |%a|p} isjust{1... %},

(p—1)/2 (p=1)/2

Y ka)l= > &
k=1

e

_p—1

8
Plug in to get
2 2 (p—1)/2
_ pe—1 p°—1 ka
n:a( 3 )—( 3 )+ Z {pJ mod 2
k=1
21 (p—1)/2

E(a—l)( 3 )+ Z (kalp) mod 2

k=1

2
If @ is odd, we have ! is integer and a — 1 is even, so product = 0 mod 2, to

get

(p—1)/2 ka
n= Z {J mod 2
p

When a = 2,




So, note that for k € {1... 2%

9<% <p—1
50 2 2k 1
0<-<Z <P g
p p p
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SO
(r—1)/2
> (2klp) =0
k=1
SO
p2 p2—1
n= mod 2 and (2p) = (-1)" = (-1)"3
So far,
p1 1 ifp=1 mod 4
(=1lp) = (-1)"= = .
—1 ifp=3 mod4
Check

(71)%7 1 ifp=1,7 mod8
-1 ifp=3,5 mod4

Theorem 42 (Quadratic Reciprocity Law). If p, g are distinct odd primes, then

p=lg—1 1 ifporg=1 mod4
(bla)(alp) = (-1 = |1 Fpord
—1 otherwise

Proof. Consider the right angled triangle with vertices (0,0), (£,0), (5, ). Note
that: no integer points on vertical side, no nonzero integer points on hypotenuse
(slope is z%’ so if we had integer point (a, b) then g = % = pb = qa, so p|a, q|b,

and if (a,b) # (0,0), then a > p,b > ¢). Ignore the ones on horizontal side.

Claim: the number of integer points on interior of triangle is

(p_z]f/Q \‘qu
k=1 p



Proof. 1f we have a point (k,1), then 1 < k < 25* and slope £ < I=1< %k.
Number of points on the segment = = & is the number of possible [, which is

just {%J. O

Add these (take triangle, rotate, add to make rectangle) - adding points in
interior of rectangle is

(r=1)/2 (=1)/2 N
> ey 500

(lp) = (-1 where = 37 | |
(o) = (1) wheretz = 37 | 2

(plg)(qlp) = (=1)"* T2 where t; + t, = total number of points
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