
18.785 Number Theory Fall 2015

Problem Set #6

Description

These problems are related to the material covered in Lectures 10-12. Your solutions are
to be written up in latex (you can use the latex source for the problem set as a template)
and submitted as a pdf-file with a filename of the form SurnamePset6.pdf via e-mail

Instructions: First do the warm up problems, then pick two of problems 1-3 to solve
and write up your answers in latex. Finally, be sure to complete the survey problem 4.

Problem 0.

These are warm up problems that do not need to be turned in.

(a) Prove that the absolute discriminant of a number field must be a square mod 4.

(b) Compute the different ideal of the quadratic extensions Q(
√
−2)/Q and Q(

√
−3)/Q.

(c) Determine all the primes that ramify in the cubic fields Q[x]/(x3
3

− x − 1) and
Q[x]/(x + x+ 1) and compute their ramification indices.

(d) Let p be an odd prime. Compute the different ideal and absolute discriminant of
the cyclotomic extension Q(ζp)/Q.

Problem 1 The different ideal (50 points)

Let A be a Dedekind domain with fraction field K, let L/K be a finite separable exten-
sion, and let B be the integral closure of A in L. Write L = K(α) with α ∈ B and let
f ∈ A[x] be the minimal polynomial of α, with degree n = [L : K].

(a) By comparing the Laurent series expansion of 1/f(x) with it partial fraction de-
composition over the splitting field of f (Galois closure of L), prove that

TL/K

(
αi

n

f

 i

=′(α)

) 0 if 0 ≤ ≤ − 2;

1 if i = n− 1;

∈ A if i ≥ n.

(b) Suppose B = A[α]. Prove that B∗ :=


{x ∈ L : TL/K(xb) ∈ A for all b ∈ B} is the

principal fractional B-ideal (1/f ′(α)). Conclude that DB/A = (f ′(α)).

(c) For any β ∈ B with minimal polynomial g ∈ A[x] define{
g′(β) if L = K(β);

δB/A(β) =
0 otherwise.
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One can show that DB/A is the B-ideal generated by {δB/A(β) : β ∈ B} (you
are not required to do this). Prove that if g is the minimal polynomial of β ∈ B
for which L = K(β) then NB/A(g′(β)) = ±disc(g). Does this imply that DB/A is
generated by the discriminants of all such g? (you may wish to consider Dedekind’s
cubic field L = Q[x]/(x3 + x2 − 2x+ 8) when answering this question).

(d) Let c be the conductor of the order C = A[α]. Prove that

c = (B∗ : C∗) := {x ∈ L : xC∗ ⊆ B∗}.

Conclude that if we define DC/A := (B : C∗) and DC/A = D(C) then we have
DC/A = cDB/A and DC/A = NB/A(c)DB/A, and that DC/A = NB/A(DC/A).

(e) Let q be a prime of B lying above a prime p of A and suppose the corresponding
residue field extension is separable. Prove that vq(DB/A) ≥ eq − 1 with equality
if and only if B/A is tamely ramified at q (hint: reduce to the case where A is a
complete DVR and B/A is totally ramified).

(f) Let p and q be distinct primes congruent to 1 mod 4, let K := Q(
√
pq), and let

L := Q(
√
p,
√
q). Prove that DL/K is the unit ideal; thus L/K is unramified.

Problem 2. Valuation rings (50 points)

An ordered abelian group is an abelian group Γ with a total order ≤ that is compatible
with the group operation. This means that for all a, b, c ∈ Γ the following hold:

a ≤ b ≤ a =⇒ a = b (antisymmetry)
a ≤ b ≤ c =⇒ a ≤ c (transitivity)
a 6≤ b =⇒ b ≤ a (totality)
a ≤ b =⇒ a+ c ≤ b+ c (compatibility)

Note that totality implies reflexivity (a ≤ a) . Given an ordered abelian group Γ, we
define the relations ≥, <,> and the sets Γ 0,Γ 0,Γ<0, and Γ>0 in the obvious way.≤ ≥

A valuation v on a field K is a surjective homomorphism v : K× → Γ to an ordered
abelian group Γ that satisfies v(x+ y) ≥ min(v(x), v(y)) for all x, y ∈ K×. The group Γ
is called the value group of v, and when Γ = {0} we say that v is the trivial valuation.
We may extend v to K by defining v(0) =∞, where ∞ is defined to be strictly greater
than any element of Γ.

Recall that a valuation ring is an integral domain A with fraction field K such that
for all x ∈ K× either x ∈ A or x−1 ∈ A (possibly both).

(a) Let A be a valuation ring with fraction field K, and let v : K× → K×/A× = Γ be
the quotient map. Show that the relation ≤ on Γ defined by

v(x) ≤ v(y)⇐⇒ y/x ∈ A,

makes Γ an ordered abelian group and that v is a valuation on K.

(b) Let K be a field with a non-trivial valuation v : K× → Γ. Prove that the set

A := {x ∈ K : v(x) ≥ 0}

is a valuation ring with fraction field K and that v(x) ≤ v(y)⇐⇒ y/x ∈ A.
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(c) Let Γ be an ordered abelian group and let k be a field. For each a ∈ Γ≥0, let xa

be a formal symbol, and define multiplication of these symbols via xaxb := xa+b.
Let A be the k-algebra whose elements are formal sums a∈I cax

a, where ca ∈ k
and the index set I ⊆ Γ 0 is well-ordered (every subset≥
Let K be the fraction field of A and define v : K× Γ by

∑
has a minimal element).

→

v

(∑
cax

a
)∑ = min{a : ca 6= 0} −min{a : da =

daxa
6 0}.

Prove that v is a valuation on K with value group Γ and valuation ring A.

(d) Let v : K× → Γv and w : K× → Γw be two valuations on a field K, and let Av and
Aw be the corresponding valuation rings. Prove that Av = Aw if and only if there
is an order preserving isomorphism ρ : Γv → Γw for which ρ ◦ v = w, in which case
we say that v and w are equivalent. Thus there is a 1-to-1 correspondence between
valuation rings with fraction field K and equivalence classes of valuations on K

(e) Let A be an integral domain properly contained in its fraction field K, and let R
be the set of local rings that contain A and are properly contained in K. Partially
order R by writing R1 ≤ R2 if R1 ⊆ R2 and the maximal ideal of R1 is contained in
the maximal ideal of R2 (this is known as the dominance ordering). Prove that R
contains a maximal element R and that every such R is a valuation ring.

(f) Prove that every valuation ring is local and integrally closed, and that the intersec-
tion of all valuation rings that contain an integral domain A and lie in its fraction
field is equal to the integral closure of A.

(g) Prove that a valuation ring that is not a field is a discrete valuation ring if and
only if it is noetherian.

Problem 3. Minkowski’s lemma and sums of four squares (50 points)

Recall Minkowski’s lemma (for Zn): if S ⊆ Rn is a symmetric convex set of volume
µ(S) > 2n then S contains a nonzero element of Zn.

Here symmetric means that S is closed under negation, and convex means that for
all x, y ∈ S the set {tx+ (1− t)y : t ∈ [0, 1]} lies in S).

(a) Prove that for any measurable S ⊆ Rn with measure µ(S) > 1 there exist distinct
s, t ∈ S such that s− t ∈ Zn, then use this to prove Minkowski’s lemma.

(b) Prove that Minkowski’s lemma is tight in the following sense: show that is is false if
either of the words “symmetric” or “convex” is removed, or if the strict inequality
µ(S) > 2n is weakened to µ(S) ≥ 2n (give three explicit counter examples).

(c) Prove that one can weaken the inequality µ(S) > 2n in Minkowski’s lemma to
µ(S) ≥ 2n if S is assumed to be compact.

You will now use Minkowski’s lemma to prove a theorem of Lagrange, which states
that every positive integers is a sum of four integer squares. Let p be an odd prime.

(d) Show that x2 + y2 = a has a solution (m,n) in F2
p for every a ∈ Fp.
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(e) Let V be the Fp-span of {(m,n, 1, 0), (−n,m, 0, 1)} in F4
p, where m2 + n2 = −1.

Prove that V is isotropic, meaning that v21 + v22 + v23 + v24 = 0 for all v ∈ V .

(f) Use Minkowski’s lemma to prove that p is a sum of four squares.

(g) Prove that the set of positive integers that are sums of four squares is closed under
multiplication.

(h) Prove that every positive integer is the sum of four squares.

Problem 4. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material to you (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

10/22 Haar measure, product formula

10/27 Minkowski bound, finiteness results

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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