
18.785 Number Theory Fall 2015

Problem Set #7

Description

These problems are related to the material covered in Lectures 12-14. Your solutions are
to be written up in latex (you can use the latex source for the problem set as a template)
and submitted as a pdf-file with a filename of the form SurnamePset7.pdf via e-mail

Instructions: First do the warm up problems, then pick two of problems 1-5 to solve
and write up your answers in latex. Anyone who wishes to do so may earn up to 25
points of extra credit by solving three problems (the extra credit you receive will be the
worst of your three scores divided by 2). Finally, complete the survey problem 6.

Problem 0.

These are warm up problems that do not need to be turned in.

(a) Prove that the imaginary quadratic fields Q(i), Q(
√
−2), Q(

√
−3), Q(

√
−7) all

have class number 1 because the Minkowski bound is less than 2.

(b) Prove that the imaginary quadratic fields Q(
√
−11), Q(

√
−19), Q(

√
−43), Q(

√
−67),

Q(
√
−163) all have class number 1 because they have no ideals of prime norm be-

low the Minkowski bound. Why is it enough to check only ideals of prime norm?
Does this work for other number fields?

(c) Prove that there are no real cubic fields of absolute discriminant less than 20
and that every real cubic field of absolute discriminant at most M is generated
by an algebraic integer with minimal polynomial x3√ + ax2 + bx + c ∈ Z[x] with
|a| < M + 2, |b| < 2

√
M + 1, and |c| <

√
M .

(d) Let n ∈ Z>0 and assume n2−1 is squarefree. Prove n+
√
n2 − 1 is the fundamental

unit of Q(
√
n2 − 1).

Problem 1. A non-solvable quintic extension (50 points)

Let f(x) := x5 − x+ 1, let K := Q[x]/(f) =: Q[α] and let L be the splitting field of f .

(a) Prove that f is irreducible in Q[x], thus K is number field. Determine the number
of real and complex places of K, and the structure of OK

× as a finitely generated
abelian group (both torsion and free parts).

(b) Prove that the ring of integers of K is OK := Z[α] and that discOK = 19 ·151. By
analyzing the norm of the different DK/ , show that for both p = 19 and p = 151Q
exactly one of the primes q of K lying above p is ramified and that this q must
have ramification index eq = 2 and residue field degree fq = 1. Conclude that the
extension K/Q is tamely ramified.
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(c) Using the fact that any extension of local fields has a unique maximal unramified
subextension, prove that for any monic irreducible polynomial g ∈ Z[x] the splitting
field of g is unramified at all primes that do not divide the discriminant of g.
Conclude that L/Q is tamely ramified, and unramified away from 19 and 151, and
similarly show it has ramification index 2 at both 19 and 151; use this to compute
discOL.

(d) Show that OK has no ideals of norm 2 or 3 and use this to prove that the class
group of OK is trivial and therefore OK is a PID.

(e) Prove that Gal(L/Q) ' S5, and that it is generated by the Frobenius elements σ2
and σ5 (Gal(L/Q) is nonabelian, so these are conjugacy class representatives).

Problem 2. Binary quadratic forms (50 points)

A binary quadratic form is a homogeneous polynomial of degree 2 in two variables:

f(x, y) = ax2 + bxy + cy2,

which we identify by the triple (a, b, c). We are interested in a specific set of binary
quadratic forms, namely, those that are integral (a, b, c ∈ Z), primitive (gcd(a, b, c) = 1),
and positive definite (b2 − 4ac < 0 and a > 0). To simplify matters, in this problem
we shall use the word form to refer to an integral, primitive, positive definite, binary
quadratic form.

The discriminant of a form is the integer D := b2 − 4ac < 0; although this is not
necessary, for the sake of simplicity we restrict our attention to fundamental discrimi-
nants D, those for which D is the discriminant of Q[x]/(f(x, 1)) = Q(

√
D).

We define the (principal) root τ := τ(f) of a form f = (a, b, c) to be the unique root
of f(x, 1) in the upper half plane H := {z ∈ C : im z > 0}:

τ =
−b+

√
D
.

2a

Let F (D) denote the set of forms with fundamental discriminant D, let K = Q(
√
D),

and let OK be the ring of integers of K.

(a) For each form f = (a, b, c) ∈ F (D) with root τ , define I(f) := aZ+aτZ. Prove that
OK = Z + aτZ and that I(f) is a nonzero OK-ideal of norm a. Show that every
nonzero fractional ideal J lies in the ideal class of I(f) for some f = (a, b, c) ∈ F (D).

(b) For each γ = ( s tu v ) ∈ SL2(Z) and f(x, y) ∈ F (D) define

fγ(x, y) := f(sx+ ty, ux+ vy).

Show that fγ ∈ F (D), and that this defines a right group action of SL2(Z) on the set
F (D) (this means ( 1 0 ) acts trivially and f (γ1γ2) γ

0 1 = (f 1)γ2 for all γ1, γ2 ∈ SL2(Z)).

Call two forms f, g ∈ F (D) equivalent if g = fγ for some γ ∈ SL2(Z).

(c) Prove that two forms f, g ∈ F (D) are equivalent if and only if I(f) and I(g) represent
the same ideal class in clOK .
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Recall that SL2(Z) acts on the upper half plane H (on the left) via(
a b

)
aτ + b

τ := ,
c d cτ + d

and that the set

F =
{
τ ∈ H : re(τ) ∈ [−1/2, 0] and |τ | ≥ 1

}
∪ τ ∈ H : re(τ) ∈ (0, 1/2) and |τ | > 1

is a fundamental region for H modulo the SL2(Z

{
)-action. A form f = (a, b, c) is said

}
to

be reduced if
−a < b ≤ a < c or 0 ≤ b ≤ a = c.

(d) Prove that two forms are equivalent if and only if their roots lie in the same SL2(Z)
orbit, and that a form is reduced if and only if its root lies in F . Conclude that
each equivalence class in F (D) contains exactly one reduced form.

(e) Prove that if f is reduced then a ≤ |D|/3; conclude that # clOK ≤ |D|/3.

Remark. The upper bound |D|/3 is an ov

√
erestimate, in fact # clOK = O(|D|1/2 log |D|);

under the generalized Riemann hypothesis one can sharpen this to O(|D|1/2 log log |D|).

(f) Compute the class numbers of Q(
√
−103) and Q(

√
−396) by enumerating the re-

duced forms in F (D) and list reduced forms f = (a, b, c) whose ideals I(f) represent
each element of the class group (you may wish to write a short Sage or Magma
script to automate this task but this is not required).

Remark. One can define (as Gauss did) a composition law for forms corresponding to
multiplication of ideals; the product of reduced forms need not be reduced, so one also
needs an algorithm to reduce a given form, but this is easy. One can then compute the
group operation in clOK using composition and reduction of forms, and this process is
quite efficient. Using the group operation one can compute # clOK much more efficiently
than by enumerating reduced forms, and one can also compute the structure of clOK as
a finite abelian group.

Problem 3. Unit groups of real quadratic fields (50 points)

A (simple) continued fraction is a (possibly infinite) expression of the form

1
a0 +

1
a1 +

a2 + · · ·

with ai ∈ Z and ai > 0 for i > 0. They are more compactly written as (a0; a1, a2, . . .).
For any t ∈ R>0 the continued fraction expansion of t is defined recursively via

t0 := t, an := btnc, tn+1 := 1/(tn − an),

where the sequence a(t) := (a0; a1, a2, . . .) terminates at an if tn = an, in which case we
say that a(t) = (a0; a1, . . . , an) is finite, and otherwise call a(t) = (a0; a1, a2, . . .) infinite.
If a(t) is infinite and there exists ` ∈ Z>0 such that an+` = an for all sufficiently large n,
we say that a(t) is periodic and call the least such integer ` := `(t) the period of a(t).
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Given a continued fraction a(t) := (a0; a1, a2, . . .) define the sequences of integers
(Pn) and (Qn) by

P−2 = 0, P−1 = 1, Pn = anPn−1 + Pn−2;

Q−2 = 1, Q−1 = 0, Qn = anQn−1 +Qn−2.

(a) Prove that a(t) is finite if and only if t ∈ Q, in which case t = a(t).

(b) Prove that if a(t) = (a0; a1, a2, . . .) is infinite then (a0; a1, . . . , an) = Pn/Qn for all
n ≥ 0, and that t = limn Pn/Qn = a(t).→∞

(c) Prove that a(t) is periodic if and only if Q(t) is a real quadratic field.

Now√let D > 0 be a squarefree integer that is not congruent to 1 mod 4 and let
K = Q( D). As shown on previous problem sets, OK = Z[

√
√ D], and it is clear that

(OK
× )tors = {±1}. Every α = x + y D ∈ OK

× has N(α) = ±1, and (x, y) is thus an
(integer) solution to the Pell equation

X2 −DY 2 = ±1 (1)

(d) Prove that√ if (x1, y1) and (x2, y2) are solutions to (1) with x1, y1, x2, y2 ∈ Z>0 then
x1 + y1 D < x2 + y2

√
D if and only if x1 < x2 and y1 ≤ y2, and show that

(x1 + y1
√
D)n > x1 + y1

√
√ D for all n > 1. Conclude that the fundamental unit

ε = x+ y D of O×K is the unique solution (x, y) to (1) with x, y > 0 and x minimal.

(e) Let a(
√
√D) = (a0; a1, a2, . . .), define the sequences (Pn) and (Qn) as above, and let

` = `( D). Prove that ε = P`−1 +Q`−1
√
D.

(f) Compute the fundamental unit ε for each of the real quadratic fields Q(
√

19),
Q(
√

570), and Q(
√

571); in each case give the period `(
√
D) as well as ε.

Problem 4. S-class groups and S-unit groups (50 points)

Let K be a number field with ring of integers OK , and let S be a finite set of places of K
including all archimedean places. Define the ring of S-integers OK,S as the set

OK,S := {x ∈ K : vp(x) ≥ 0 for all p 6∈ S}.

(a) Prove that OK,S is a Dedekind domain containing OK with the same fraction field.

(b) Define a natural homomorphism between clOK,S and clOK (it is up to you to
determine which direction it should go) and use it to prove that clOK,S is finite.

(c) Prove that there is a finite set S for which OK,S is a PID and give an explicit upper
bound on #S that depends only on n = [K : Q] and |discOK |.

(d) Prove the S-unit theorem: OK
×
,S is a finitely generated abelian group of rank #S−1.
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Problem 5. Classification of global fields (50 points)

Let K be a field and let MK be the set of places of K (equivalence classes of nontrivial
absolute values). We say that K has a (strong) product formula if MK is nonempty and
there exists a set of representative | |v for v ∈MK and a positive real numbers mv such
that for all x ∈ K× we have

v∈

∏
|x|mv

v = 1,
MK

with all but finitely many factors in the product equal to 1. Equivalently, if we define
normalized absolute values ‖ ‖v := |x|mv

v for each v ∈MK , then for all x ∈ K× we have

v∈

∏
‖x‖v = 1,

MK

with ‖x‖v = 1 for all but finitely many v ∈MK .

Definition. A field K is a global field if it has a product formula and the completion
of K at any nontrivial absolute value is a local field.

We proved in lecture that every finite extension of Q and Fq(t) is a global field. In
this problem you will prove the converse (a theorem due to Artin and Whaples).

Let K be a global field and fix a set of normalized absolute values ‖ ‖v for v ∈MK .
As we defined in lecture, an MK-divisor is a sequence of positive real numbers c = (cv)
indexed by v ∈ MK with all but finitely many cv = 1 such that for each v ∈ MK there
is an x ∈ K× for which cv = ‖x‖v. We then define

L(c) := {x ∈ K : ‖x‖v ≤ cv for all v ∈MK}.

(a) Prove that MK is infinite but contains only finitely many archimedean places.

(b) Prove that for every MK-divisor c the set L(c) is finite.

(c) Let F be a field. Prove that if K is a finite extension of F of if F is a finite
extension of K then F is a global field.

(d) Prove that if MK contains an archimedean place then K is a finite extension of Q
(hint: show that K contains Q and use (b) to show that K/Q is a finite extension).

(e) Prove that if MK does not contain an archimedean place then K is a finite extension
of Fq(t) for some finite field Fq (hint: by choosing an appropriate MK-divisor c,
show that L(c) is a finite field k ⊆ K and that every t ∈ K − k is transcendental
over k; then show that K is a finite extension of k(t) as in (d)).

(f) In your proofs of (a)-(e) above, where did you use the fact that the completions
of K are local fields?

Problem 6. Survey

Complete the following survey by rating each problem you attempted on a scale of 1 to 10
according to how interesting you found it (1 = “mind-numbing,” 10 = “mind-blowing”),
and how difficult you found it (1 = “trivial,” 10 = “brutal”). Also estimate the amount
of time you spent on each problem to the nearest half hour.

5



Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Please rate each of the following lectures that you attended, according to the quality of
the material (1=“useless”, 10=“fascinating”), the quality of the presentation (1=“epic
fail”, 10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”, 5=“just right”)
and the novelty of the material to you (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

10/29 Unit group and regulator

11/3 Introduction to zeta functions

Please feel free to record any additional comments you have on the problem sets and the
lectures, in particular, ways in which they might be improved.
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