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11 Completing extensions, different and discriminant ideals

11.1 Local extensions come from global extensions

ˆ ˆLet L be a local field. From our classification of local fields (Theorem 9.7), we know L is
ˆa finite extension of K = Qp (some prime p ≤ ∞ ˆ) or K = Fq((t)) (some prime power q).

We also know that the completion of a global field at any of its nontrivial absolute values
ˆis such a local field (Corollary 9.5). It thus reasonable to ask whether L is the completion

of a corresponding global field L that is a finite extension of K = Q or K = Fq(t).
ˆMore generally, for any fixed global field K and local field K that is the completion of K

with respect to one of its nontrivial absolute values
ˆ

| |, we may ask whether every finite
ˆextension of local fields L/K necessarily corresponds to an extension of global fields L/K,

ˆwhere L is the completion of L with respect to one of its absolute values (whose restriction
to K must be equivalent to | |). The answer is yes. In order to simplify matters we restrict

ˆ ˆour attention to the case where L/K is separable, but this is true in general.

ˆTheorem 11.1. Let K be a global field with a nontrivial absolute value | |, and let K be the
completion of K with respect to | | ˆ ˆ. Every finite separable extension L of K is the completion
of a finite separable extension L of K with respect to an absolute value that restricts to

ˆ ˆ ˆ ˆ
| |.

Moreover, one can choose L so that L is the compositum of L and K and [L : K] = [L : K].

ˆ ˆProof. Let L/K be a separable extension of degree n. Let us first suppose that | | is
ˆarchimedean. Then K is a number field and K is either R or C; the√only nontrivial case is

ˆwhen K = R ˆand n = 2, and we may then assume that ' C ˆL is K( −d) where −d ∈ Z<0

is a nonsquare in K (such a −d exists because K/Q is finite). We may assume without
ˆloss of generality that | | is the Euclidean absolute R

to it), and uniquely extend to L = K(
√ value on K ' (it must be equivalent

| | −d) by requiring |
√
−d| =

√
ˆd. Then L is

the completion of L with respect to | | ˆ ˆ ˆ, and clearly [L : K] = [L : K] = 2, and L is the
ˆcompositum of L and K.

ˆWe now suppose that | | is nonarchimedean, in which case the valuation ring of K is a
complete DVR and | | is induced by the corresponding discrete valuation. By the primitive

ˆ ˆ ˆelement theorem (Theorem 4.33), we may assume L = K[x]/(f) where f ∈ K[x] is monic,
ˆirreducible, and separable. The field K is dense in its completion K, so we can find a monic

g ∈ K[x] ⊆ K̂[x] that is arbitrarily close to f : such that ‖g−f‖1 < δ for any δ > 0. It then
ˆ ˆ ˆfollows from Proposition 10.30 that L = K[x]/(g) (and that g is separable). The field L is

a finite separable extension of the fraction field of a complete DVR, so by Theorem 9.25 it
is itself the fraction field of a complete DVR and has a unique absolute value that extends
the absolute value | | ˆon K.

ˆNow let L = K[x]/(g). The polynomial g is irreducible in K[x], hence in K[x], so
ˆ ˆ ˆ ˆ[L : K] = deg g = [L : K]. The field L contains both K and L, and it is clearly the smallest

ˆ ˆ ˆfield that does (since g is irreducible in K[x]), so L is the compositum of K and L. The
ˆabsolute value on L restricts to an absolute value on L extending the absolute value | | on

ˆ ˆK, and L is complete, so L contains the completion of L with respect to | |. On the other
ˆ ˆhand, the completion of L with respect | | contains both L and K, so it must be L.

ˆ ˆIn the preceding theorem, when the local extension L/K is Galois one might ask whether
ˆ ˆthe corresponding global extension L/K is also Galois, and whether Gal(L/K) ' Gal(L/K).

As shown by the following example, this need not be the case.
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ˆExample Q ˆ ˆ11.2. Let K = , K = Q7 and L = K[x]/(x3 − ˆ ˆ2). The extension L/K is
ˆGalois because K = Q7 contains ζ3 (we can lift the root 2 of x2 + x + 1 ∈ F7[x] to a root

of x2 + x+ 1 ∈ Q 3
√ 7[x] via Hensel’s lemma), and this implies that x − 2 splits completely in

Lw = Q7(
3 2). But L = K[x]/(x3 − 2) is not a Galois extension of K because it contains

only one root of x3 − ˆ2. However, we can replace K with Q(ζ3) without changing K (take
ˆthe completion of K with respect to the absolute value induced by a prime above 7) or L,

but now L = K[x]/(x3 − 2) is a Galois extension of K.

In the example we were able to adjust our choice of the global field K without changing
ˆ ˆ ˆ ˆthe local fields extension L/K in a way that ensures that L/K and L/K have the same

automorphism group. Indeed, this is always possible.

ˆ ˆCorollary 11.3. For every finite Galois extension L/K of local fields there is a correspond-
ˆing Galois extension of global fields L/K and an absolute value | | on L such that L is the

ˆcompletion of L with respect to | |, K is the completion of K with respect to the restriction
of | | ˆ ˆto K, and Gal(L/K) ' Gal(L/K).

Proof. The archimedean case is already covered by Theorem 11.1 (take K = Q), so we
ˆassume L is nonarchimedean and note that we may take | | to be the absolute value on both

ˆ ˆ ˆK and on L (by Theorem 9.25). The field K is an extension of either Qp or Fq((t)), and by
ˆapplying Theorem 11.1 to this extension we may assume K is the completion of a global

field K with respect to the restriction of | |. As in the proof of the theorem, let g ∈ K[x]
ˆ ˆ ˆbe a monic separable polynomial irreducible in K[x] such that L = K[x]/(g) and define

ˆ ˆL := K[x]/(g) so that L is the compositum of K and L.
Now let M be the splitting field of g over K, the minimal extension of K that contains

ˆall the roots of g (which are distinct because g is separable). The field L also contains these
ˆ ˆ ˆ ˆroots (since L/K is Galois) and L contains K, so L contains a subextension of K isomorphic

to M (by the universal property of a splitting field), which we now identify with M ; note
ˆthat L is also the completion of M with respect to the restriction of | | to M .

ˆ ˆWe have a group homomorphism ϕ : Gal(L/K) Gal(M/K) induced by restriction,
∈ ˆ ˆ

→
and ϕ is injective (each σ Gal(L/K) is determined by its action on any root of g in M). If
we now replace K by the fixed field of the image of ϕ and replace L with M , the completion
of K with respect to the restriction of | | ˆ ˆis still equal to K, and similarly for L and L, and

ˆ ˆnow Gal(L/K) = Gal(L/K) as desired.

11.2 Completing a separable extension of Dedekind domains

We now return to our general AKLB setup: A is a Dedekind domain with fraction field K
with a finite separable extension L/K, and B is the integral closure of A in L, which is also
a Dedekind domain. Recall from Theorem 5.11 that if p is a nonzero prime of A, each prime
q|p gives a valuation vq of L that extends the valuation vp of K with index eq, meaning
that vq|K = eqvp. Moreover, every valuation of L that extends vp arises in this way. We
now want to look at what happens when we complete K with respect to the absolute value
| |p induced by vp, and similarly complete L with respect to | |q for some q|p. This includes
the case where L/K is an extension of global fields, in which case we get a corresponding
extension Lq/Kp of local fields for each q|p, but note that Lq/Kp may have strictly smaller
degree than L/K because if we write L ' K[x]/(f), the irreducible polynomial f ∈ K[x]
need not be irreducible over Kp. Indeed, this will necessarily be the case if there is more
than one prime q lying above p; there is a one-to-one correspondence between factors of f
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in Kp[x] and primes q|p. If L/K is Galois, so is Lq/Kp and each Gal(Lq/Kp) is isomorphic
to the decomposition group Dq (which perhaps helps to explain the terminology).

The following theorem gives a complete description of the situation.

Theorem 11.4. Assume AKLB, let p be a prime of A, and let pB = q|p q
eq be the

factorization of pB in B. Let Kp denote the completion of K with respect to | |p, and let p̂
denote the maximal ideal of its valuation ring. For each q|p, let Lq denote

∏
the completion

of L with respect to | |q, and let q̂ denote the maximal ideal of its valuation ring. The
following hold:

(1) Each Lq is a finite separable extension of Kp;

(2) Each q̂ is the unique prime of Lq lying over p̂.

(3) Each q̂ has ramification index eq̂ = eq and residue field degree fq̂ = fq.

(4) [Lq : Kp] = eqfq;

(5) The map L ⊗K Kp →
∏

q p Lq defined by ` ⊗ x )| 7→ (`x, . . . , `x is an isomorphism of
finite étale Kp-algebras.

(6) If L/K is Galois then each Lq/Kp is Galois and we have isomorphisms of decompo-
sition groups Dq ' Dq̂ = Gal(Lq/Kp) and inertia groups Iq ' Iq̂.

Proof. We first note that the Kp and the Lq are all fraction fields of complete DVRs; this
follows from Proposition 8.18 (note: we are not assuming they are local fields, in particular,
their residue fields need not be finite).

(1) For each q|p the embedding K ↪→ L induces an embedding Kp ↪→ Lq via the map
[(an)] 7→ [(an)] on equivalence classes of Cauchy sequences; a sequence (an) that is Cauchy
in K with respect to | |p, is also Cauchy in L with respect to | |q because vq extends vp.
We thus view Kp as a subfield of Lq, which also contains L. There is thus a K-algebra
homomorphism φq : L ⊗K Kp → Lq defined by ` ⊗ x 7→ `x, which we may view as a linear
map of Kp vector spaces. We claim that φq is surjective.

If α1, . . . , αm is any basis for Lq then its determinant with respect to B, i.e., the m×m
matrix whose jth row contains the coefficients of αj when written as a linear combination
of elements of B, must be nonzero. The determinant is a polynomial in the entries of this
matrix, hence a continuous function with respect to the topology on Lq induced by the
absolute value | · |q. It follows that if we replace α1, . . . , αm with `1, . . . , `m chosen so that
|αj−`j |q is sufficiently small, the matrix of `1, . . . , `m with respect to B must also be nonzero,
and therefore `1, . . . , `m is also a basis for Lq. We can thus choose a basis `1, . . . , `m ∈ L,
since L is dense in its completion Lq. But then {`j} = {φq(`j ⊗ 1)} ⊆ imφq spans Lq, so φq
is surjective as claimed.

The Kp-algebra L⊗K Kp is the base change of a finite étale algebra, hence finite étale,
by Proposition 4.34. It follows that Lq is a finite separable extension of Kp: it certainly
has finite dimension as a Kp-vector space, since φq is surjective, and it is separable because
every α ∈ Lq is the image φq(β) of an element β ∈ L ⊗K Kp that is a root of a separable
(but not necessarily irreducible) polynomial f ∈ Kp[x], as explained after Definition 4.29;
we then have 0 = φq(0) = φq(f(β)) = f(α), so α is a root of f , hence separable.

(2) The valuation rings of Kp and Lq are complete DVRs, so this follows immediately
from Theorem 9.20.

(3) The valuation vq̂ extends vq with index 1, which in turn extends vp with index eq.
The valuation vp̂ extends vp with index 1, and it follows that vq̂ extends vp̂ with index eq
and therefore eq̂ = eq. The residue field of p̂ is the same as that of p: for any Cauchy
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sequence (an) over K the an will eventually all have the same image in the residue field at p
(since vp(an − am) > 0 for all sufficiently large m and n). Similar comments apply to each
q̂ and q, and it follows that fq̂ = fq.

(4) It follows from (2) that [Lq : Kp] = eq̂fq̂, since q̂ is the only prime above p̂, and (3)
then implies [Lq : Kp] = eqfq.

(5) Let φ =
∏

q|p φq, where φq are the∏surjective Kp-algebra homomorphisms defined in
the proof of (1). Then φ : L ⊗K Kp → q L|p q is a Kp-algebra homomorphism. Applying
(4) and the fact that base change preserves dimension (see Proposition 4.34):

dimKp (L⊗K Kp) = dimK L = [L : K] =
∑

eqfq = =

q|p

∑
[Lq : Kp] dimKp

q


Lq


.

|p

∏
q|p

The domain and range of φ thus have the same dimension, and φ is surjective


(since


the φq

are), so it is an isomorphism.
(6) We now assume L/K is Galois. Each σ ∈ Dq acts on L and respects the valuation vq,

since it fixes q (if x ∈ qn then σ(x) ∈ σ(qn) = σ(q)n = qn). It follows that if (xn) is a Cauchy
sequence in L, then so is (σ(xn)), thus σ is an automorphism of Lq, and it fixes Kp. We
thus have a group homomorphism ϕ : Dq → AutKp(Lq).

If σ ∈ Dq acts trivially on Lq then it acts trivially on L ⊆ Lq, so kerϕ is trivial. Also,

eqfq = |Dq| ≤ #AutKp(Lq) ≤ [Lq : Kp] = eqfq,

by Theorem 11.4, so #AutKp(Lq) = [Lq : Kp] and Lq/Kp is Galois, and this also shows
that ϕ is surjective and therefore an isomorphism. There is only one prime q̂ of Lq, and it
is necessarily fixed by every σ ∈ Gal(Lq/Kp), so Gal(Lq/Kp) ' Dq̂. The inertia groups Iq
and Iq̂ both have order eq = eq̂, and ϕ restricts to a homomorphism Iq → Iq̂, so the inertia
groups are also isomorphic.

Corollary 11.5. Assume AKLB and let p be a prime of A. For every α ∈ L we have

NL/K(α) =
∏

NLq/Kp
(α) and TL/K(α) = TLq/Kq

(α).

q|p

∏
q|p

where we view α as an element of Lq via the canonical embedding L ↪→ Lq.

Proof. The norm and trace are defined as the determinant and trace of K-linear maps

L −×→α L that are unchanged upon tensoring with Kp; the corollary then follows from the
isomorphism in part (5) of Theorem 11.4, which commutes with the norm and trace.

Remark 11.6. Theorem 11.4 can be stated more generally in terms of (equivalence classes
of) absolute values (or places). Rather than working with a prime p of K and primes q of
L above p, one works with an absolute value | |v of K (for example, | |p) and inequivalent
absolute values | |w of L that extend | |v. Places will be discussed further in the next lecture.

Corollary 11.7. Assume AKLB with A a DVR with maximal ideal p. Let pB = qeq be
ˆ ˆthe factorization of pB in B. Let A denote the completion of A, and for each q

ˆ
|p, let Bq

ˆdenote the completion of Bq. Then B ⊗A A

∏
'
∏

q|pBq.
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Proof. Since A is a DVR (and therefore a torsion-free PID), the ring extension B/A is a
ˆ ˆfree A∏module of rank n := [L : K], and therefore B ⊗A A is a free A-module of rank n.

ˆ ˆ ˆAnd Bq is a free A-module of rank q|p eqfq = n. These two A-modules lie in isomorphic
Kp-vector spaces, L ⊗K Kp ' L

∑∏
q, by part (5) of Theorem 11.4. To show that they

are isomorphic it suffices to check that they are isomorphic after reducing modulo p̂, the
ˆmaximal ideal of A.

ˆFor the LHS, note that A/p̂ ' A/p, so

B ⊗ ˆ
A A/p̂ ' B ⊗A A/p ' B/pB.

On the RHS we ha∏ve

ˆ ˆ ˆ ˆB ' ˆ q
q/pBq

∏
B e

q/pBq '
∏

Bq/pBq =
∏

Bq/q Bq

q|p q|p q|p q|p

which is isomorphic to B/pB on the LHS because pB =
∏

q|p q
eq .

11.3 The different ideal

We continue in our usual AKLB setup: A is a Dedekind domain, K is its fraction field,
L/K is a finite separable extension, and B is the integral closure of A in L (a Dedekind
domain with fraction field L). We would like to understand the primes that ramify in L/K,
that is, the primes q of B for which eq > 1, or, at a coarser level, primes p of A that
have a ramified prime q lying above them. Our main tool for doing so is the different ideal
DB/A, a fractional ideal of B that will give us an exact answer to this question: the primes
of B that ramify are exactly those that divide the different ideal, and vq(DB/A) will give us
information about the ramification index eq (its exact value in the tamely ramified case).
Of course we could just define DB/A to have the properties we want, but the key is to define
it in a way that makes it independently computable, allowing us to determine the primes q
that ramify in B, which we typically do not know a priori.

Recall from Lecture 4 the trace pairing L×L→ K defined by (x, y) 7→ TL/K(xy). Since
L/K is separable, this pairing is nondegenerate, by Proposition 4.58. For any A-module
M ⊆ L, we defined the dual A-module

M∗ := {x ∈ L : TL/K(xm) ∈ A ∀m ∈M}

(see Definition 4.59). Note that if M ⊆ N are two A-modules in L, then it is clear from the
definition that N∗ ⊆M∗ (taking duals reverses inclusions).

If M is a free A-lattice (see Definition 6.1) then it has an A-module basis e1, . . . , en that
is also a K-basis for L. The dual A-module M∗ is then also a free A-lattice, and it has the
dual basis e∗1, . . . , e

∗
n, which is the unique K-basis for L that satisfies

1
TL/K(e∗i ej) = δij :=

{
if i = j,

0 otherwise

(see Proposition 4.54) and also an A-module basis for M∗.
Every B-module M ⊆ L (including all fractional ideals of B) is also a (not necessarily

free) A-module in L, and in this case the dual A-module M∗ is also a B-module: for any
x ∈ M∗, b ∈ B, and m ∈ M we have T((bx)m) = T(x(bm)) ∈ A, since bm ∈ M and
x ∈ M∗, so bx ∈ M∗. If M is a finitely generated as a B-module, then it is a fractional
ideal of B (by definition), and provided it is nonzero, it is invertible, since B is a Dedekind
domain, and therefore an element of the ideal group IB. We now show that M∗ ∈ IB.
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Lemma 11.8. Assume AKLB and suppose M ∈ IB. Then M∗ ∈ IB.

Proof. Since M is a B-module, so is M∗ (as noted above), and M∗ is clearly nonzero: if
M = 1I with b B nonzero and I a B-ideal, then bm B and T (bm) A for allb ∈ ∈ L/K ∈
m ∈ M so b ∈ M∗. We just need to check that M∗ is finitely generated. Here we use the
use the standard trick: find a free submodule of M , take its dual to get a free module that
contains M∗, and then note that M∗ is a submodule of a noetherian module.

Let e1, . . . , en be a K-basis for L. By clearing denominators, we may assume the ei lie
in B (since L = FracB). If m is any element of M , then me1, . . . ,men is a K-basis for L
that lies in M . Let C be the free A-submodule of M generated by me1, . . . ,men; this is
a free A-lattice, and it follows that M∗ ⊆ C∗ is contained in the free A-lattice C∗, which
is obviously finitely generated. As a finitely generated module over a noetherian ring, the
A-module C∗ is a noetherian module, which means that every A-submodule of C∗ is finitely
generated, including M∗. We have A ⊆ B, so if M∗ is finitely generated as an A-module,
it is certainly finitely generated as a B-module.

Definition 11.9. Assume AKLB. The inverse different ideal (or codifferent) of B is the
dual of B as an A-module:

B∗ := {x ∈ L : TL/K(xb) ∈ A ∀b ∈ B} ∈ IB.

The different ideal (or different) DB/A is the inverse of B∗ as a fractional B-ideal.

To justify the name, we should check that DB/A is actually an ideal, not just a fractional
ideal. The dual module B∗ clearly contains 1, since TL/K(1 ·b) = TL/K(b) ∈ A for all b ∈ B.
It follows that

D 1
B/A = (B∗)− = (B : B∗) = {x ∈ L : xB∗ ⊆ B} ⊆ B,

so DB/A is indeed a B-ideal.
We now show that the different respects localization and completion.

Proposition 11.10. Assume AKLB, let S be a multiplicative subset of A. Then

S−1DB/A = DS−1B/S .−1A

Proof. Since taking inverses respects localization, it suffices to show that S−1B∗ = (S−1B)∗,
where (S−1B)∗ denotes the dual of S−1B as an S−1A-module in L. If x = s−1y ∈ S−1B∗
with s ∈ S and y ∈ B∗, and m = t−1b ∈ S−1B with t ∈ S and b ∈ B then

TL/K(xm) = (st)−1TL/K(yb) ∈ S−1A,

since the trace is K-linear and S ⊆ A ⊆ K; this shows that S−1B∗ ⊆ (S−1B)∗, For
the reverse inclusion, let {bi} be a finite set of generators for B as an A-module and let
x ∈ (S−1B)∗. For each bi we have TL/K(xbi) ∈ S−1A, since (S−1B)∗ is an S−1B-module

and therefore∏a B-module. So each TL/K(xbi) = s−1i ai for some si ∈ S and ai ∈ A. If we
now put s = si (a finite product), then TL/K(sxbi) ∈ A for all bi (here we are again using
the K-linearity of TL/K). So sx ∈ B∗, and therefore x ∈ S−1B∗ as desired.

Proposition 11.11. Assume AKLB and let q|p be a prime of B. Then

D ˆ
ˆ ˆ = Bq.Bq/A /Ap

DB ·
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Proof. We can assume without loss of generality that A is a DVR by localizing at p. Let
ˆ ˆ ˆ ˆL := L⊗K. By (5) of Theorem 11.4, we have L = q p Lq. This is not a field, in general,|
but Tˆ ˆ is defined as for any ring extension, and we have Tˆ ˆ (x) = Tˆ ˆ (x).L/K L/K q|p Lq/K

ˆ ˆ ˆ ˆ ˆ ˆNow let B := B A B

∏
⊗ . By Corollary 11.7, = q pBq, and therefore B

∑
∗ B| ' q|p q

∗ (since

ˆ ˆthe trace is just a sum of traces). It follows that B∗ ' B∗ ⊗A A. Thus B∗ generates the
ˆ ˆfractional ideal Bq
∗ ∈ I ˆ . Taking inverses,

∏
D −1
B/A = (B∗) generates (B

∏
Bq q

∗)−1 = D ˆ ˆ.Bq/A

11.4 The discriminant

Definition 11.12. Let B/A be a ring extension with B free as an A-module. For any
e1, . . . , en ∈ B we define the discriminant

disc(e1, . . . , en) = det[TB/A(eiej)]i,j ∈ A,

where TB/A(b) is the trace from B to A (see Definition 4.40).1

We have in mind the case where e1, . . . , en is a basis for L as a K-vector space. In our
usual AKLB setup, if e1, . . . , en ∈ B then disc(e1, . . . , en) ∈ A.

Proposition 11.13. Let L/K be a finite separable extension of degree n, and let Ω/K be a
field extension for which there are distinct σ1, . . . , σn ∈ homK(L,Ω). For any e1, . . . , en ∈ L

2disc(e1, . . . , en) = (det[σi(ej)]ij) .

Furthermore, for any x ∈ L

2disc(1, x, x2, . . . , xn−1) =
∏

(σi(x)
i<j

− σj(x)) .

Note that such an Ω exists, since L/K is separable (just take a normal closure).

Proof. For 1 ≤ i, j ≤ nn we have TL/K(eiej) =
∑

k=1 σk(eiej), by Theorem 4.44. Therefore

disc(e1, . . . , en) = det[TL/K(eiej)]ij

= det ([σk(ei)]ik[σk(ej)]kj)

= det
(
[σk(ei)]ik[σk(ej)]

t
jk

2= (det[σi(ej)]ij)

)

since the determinant is multiplicative and invariant under taking transposes.
Now let x ∈ L and define ei := xi−1 for 1 ≤ i ≤ n. Then

2 −1 (
j−1 )2n

∏
− 2disc(1, x, x , . . . , x ) = det[σi(x )]ij = (σi(x) σj(x)) ,

i<j

since [σi(x)j−1)]ij is a Vandermonde matrix.

1This definition is consistent with Definition 4.49 where we defined the discriminant of a bilinear pairing.
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Definition 11.14. For a polynomial f(x) = i(x− αi), the discriminant of f is

disc(f) :=

∏
∏

(αi
i<j

− αj)2.

Equivalently, if A is a Dedekind domain, f ∈ A[x] is a monic separable polynomial, and α
is the image of x in A[x]/(f(x)), then

disc(f) = disc(1, α, α2, . . . , αn−1) ∈ A.

Example 11.15. disc(x2 + bx+ c) = b2 − 4c and disc(x3 + ax+ b) = −4a3 − 27b2.

Now assume AKLB and let M be an A-lattice in L (Definition 6.1). Then M is a
finitely generated A-module that contains a basis for L as a K-vector space, but we would
like to define the discriminant of M in a way that does not require us to choose a basis.

Let us first consider the case where M is a free A-lattice. If e1, . . . , en ∈ M ⊆ L and
e′1, . . . , e

′
n ∈M ⊆ L are two bases for M , then

disc(e′1, . . . , e
′
n) = u2 disc(e1, . . . , en)

for some unit u ∈ A×; this follows from the fact that the change of basis matrix P ∈ An×n
is invertible and its determinant is therefore a unit u. This unit gets squared because we
need to apply the change of basis twice in order to change T(eiej) to T(e′ie

′
j). Explicitly,

writing bases as row-vectors, let e = (e1, . . . , en), e′ = (e′1, . . . , e
′
n) and suppose e′ = eP . We

then have

disc(e′) = det[TL/K(e′ie
′
j)]ij

= det[TL/K((eP )i(eP )j)]ij

= det[P tTL/K(eiej)P ]ij

= (detP t) disc(e)(detP )

= (detP )2 disc(e),

where we have (repeatedly) used the fact that TL/K is A-linear.
This actually gives us an unambiguous definition when A = Z: the only units in Z are

u = ±1, so we always have u2 = 1 and get the same discriminant no matter which basis
we choose. In general we want to take the principal fractional ideal of A generated by
disc(e1, . . . , en), which does not depend on the choice of basis. This suggests how we should
define the discriminant of M in the general case, where M is not necessarily free.

Definition 11.16. Assume AKLB and let M be an A-lattice in L. The discriminant
D(M) of M is the A-module generated by the set {disc(e1, . . . , en) : e1, . . . , en ∈M}.

In the case that M is free, D(M) is equal to the principal fractional ideal generated by
disc(e1, . . . , en), for any fixed basis e = (e1, . . . , en). For any n-tuple e′ = (e′1, . . . , e

′
n) of

elements in L, we can write e′ = eP for some (not necessarily invertible) matrix P ; we will
have disc(e′) = 0 whenever e′ is not a basis.

Lemma 11.17. Assume AKLB and let M ⊆M ′ be free A-lattices in L. If D(M) = D(M ′)
then M = M ′.
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Proof. Fix bases e and e′ for M and M ′. If D(M) = (disc(e)) = (disc(e′)) = D(M ′) as
fractional ideals of A, then the change of basis matrix from M ′ to M is invertible over A,
which implies M ′ ⊆M and therefore M = M ′.

In general, D(M) is a fractional ideal of A, but it need not be principal.

Proposition 11.18. Assume AKLB and let M be an A-lattice in L. Then D(M) ∈ IA.

Proof. The A-module D(M) is nonzero because M contains a K-basis e1, . . . , en for L and
disc(e1, . . . , en) 6= 0 because the trace pairing is nondegenerate, and it is clearly a submodule
of the fraction field K of A (it is generated by determinants of matrices with entries in K).
To show that D(M) is finitely generated as an A-module we use the usual trick: show that it
is a submodule of a noetherian module. Let N be the free A-lattice generated by a K-basis
of L in M . Since N is finitely generated, we can pick a nonzero a ∈ A such that M ⊆ a−1N .
Then D(M) ⊂ D(a−1N), and since a−1N is a free A-lattice, D(a−1N) is finitely generated
and therefore a noetherian module, since A is noetherian. Every submodule of a noetherian
module is finitely generated, so D(M) is finitely generated.

Definition 11.19. Assume AKLB. The discriminant of L/K is the discriminant of B as
an A-module:

DL/K := DB/A := D(B) ∈ IA.

Note that DL/K is a fractional ideal (in fact an ideal, by Corollary 11.24 below), not an
element of A (but see Remark 11.21 below).

Example 11.20. Consider the case A = Z, K = Q, L = Q(i), B = Z[i]. Then B is a free
A-lattice with basis (1, i) and we can compute DL/K in three ways:

T (1 1) T (1 i) 2 0• disc(1, i) = det

[
L/K · L/K ·

= det = 4.
TL/K(i · 1) TL/K(i · i)

] [
0 −2

]
−

• The non-trivial automorphism of L/K fixes 1 and sends i to −i, so we could instead
2

1 1
compute disc(1, i) =

(
det

[
i −i

])
= (−2i)2 = −4.

• We have B = Z[i] = Z[x]/(x2 + 1) and can compute disc(x2 + 1) = −4.

In every case the discriminant ideal DL/K is (−4) = (4).

Remark 11.21. If A = Z then B is the ring of integers of the number field L, and B is a
free A-lattice, because it is a torsion-free module over a PID and therefore a free module. In
this situation it is customary to define the absolute discriminant DL of the number field L
to be the integer disc(e1, . . . , en) ∈ Z, for any basis (e1, . . . , en) of B, rather than the ideal it
generates. As noted above, this integer is independent of the choice of basis because u2 = 1
for any u ∈ Z×; in particular, the sign of DL is well defined. In the example above, the
absolute discriminant is DL = −4 (not 4).

We now show that the discriminant respects localization.

Proposition 11.22. Assume AKLB and let S be a multiplicative subset of A. Then
S−1DB/A = DS−1B/S−1A.
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Proof. Let x = s−1 disc(e1, . . . , e
1

n) ∈ S− DB/A for some s ∈ S and e1, . . . , en ∈ B. Then
x = s2n−1 disc(s−1e1, . . . , s

−1en) lies in DS−1B/S−1A. This proves the forward inclusion.
Conversely, for any e1, . . . , en ∈ S−1B we can choose a single s ∈ S ⊆ A so that each sei

lies in B. We then have disc(e1, . . . , en) = s−2n disc(se1, . . . , sen) ∈ S−1DB/A, which proves
the reverse inclusion.

We have now defined two different ideals associated to a finite separable extension of
Dedekind domains B/A in the AKLB setup. We have the different DB/A, which is a
fractional ideal of B, and the discriminant DB/A, which is a fractional ideal of A. We now
relate these two ideals in terms of the ideal norm NB/A : IB → IA, which for I ∈ IB is
defined as NB/A(I) := (B : I)A, where (B : I)A is the module index (see Definitions 6.2
and 6.5). We recall that NB/A(I) is also equal to the ideal generated by the image of I
under the field norm NL/K ; see Corollary 6.8.

Theorem 11.23. Assume AKLB. Then DB/A = NB/A(DB/A).

Proof. The different respects localization at any prime p of A (see Proposition 11.10), and
we just proved that this is also true of the discriminant. Since A is a Dedekind domain,
the A-modules on both sides of the equality are determined by the intersections of their
localization, so it suffices to consider the case that A = Ap is a DVR, and in particular a
PID. In this case B is a free A-lattice in L (torsion-free over a PID implies free), and we
can choose a basis e1, . . . , en for B as an A-module. The dual A-module

B∗ = {x ∈ L : TL/K(xb) ∈ A ∀b ∈ B} ∈ IB

is also a free A-lattice in L, with basis e∗1, . . . , e
∗
n uniquely determined by TL/K(e∗i ej) = δij .

If M is any free A-lattice with basis m1, . . . ,mn, then [TL/K(miej)]ij is precisely the
change of basis matrix from e∗1, . . . , e

∗
n to m1, . . . ,mn. Applying this to the free A-lattice B,

we then have
DB/A =

(
det[TL/K(eiej)]ij = (B∗ : B)A,

by the definition of the module index for free A-mo

)
dules (see Definition 6.2).

For any I ∈ IB we have (B : I) = I−1 = (I−1 : B) as B-modules, and it follows that
(B : I)A = (I−1 : B)A. Applying this with I−1 = B∗ gives

DB/A = (B∗ : B)A = (B : (B∗)−1)A = (B : DB/A)A = NB/A(DB/A)

as claimed.

Corollary 11.24. Assume AKLB. The discriminant DB/A is an A-ideal.

Proof. The different DB/A is a B-ideal, and the field norm NL/K sends elements of B to A;
it follows that DB/A = NB/A(DB/A) = ({NL/K(x) : x ∈ DB/A}) is an A-ideal.

18.785 Fall 2015, Lecture #11, Page 10

http://math.mit.edu/classes/18.785/2015fa/LectureNotes6.pdf#theorem.2.2
http://math.mit.edu/classes/18.785/2015fa/LectureNotes6.pdf#theorem.2.5
http://math.mit.edu/classes/18.785/2015fa/LectureNotes6.pdf#theorem.2.8
http://math.mit.edu/classes/18.785/2015fa/LectureNotes6.pdf#theorem.2.2


MIT OpenCourseWare
http://ocw.mit.edu

18.785 Number Theory I
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	
	Completing extensions, different and discriminant ideals
	Local extensions come from global extensions
	Completing a separable extension of Dedekind domains
	The different ideal
	The discriminant




