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12 Ramification, Haar measure, the product formula

12.1 Ramification in terms of the different and discriminant

We conclude our discussion of the different and discriminant by analyzing the information
they give us about the primes that ramify in an extension. Recall our standardAKLB setup,
where A is a Dedekind domain, K is its fraction field, L is a finite separable extension of K,
and B is the integral closure of A in L (a Dedekind domain with fraction field L). We wish
to understand the primes (nonzero prime ideals) p of A that ramify in B, meaning that
there is a prime q|p lying above p (recall that this means either the ramification index eq is
greater than 1, or the residue field extension is inseparable; in other words, p is unramified
if and only if B/pB is an étale (A/p)-algebra). We say that the extension L/K is unramified
at p if the prime p is unramified (in which case all the primes q|p are unramified), and that
it is unramified at q if the prime q is unramified.

Theorem 12.1. Assume AKLB, let q be a prime of B lying above a prime p of A. The
extension L/K is unramified at q if and only if q does not divide DB/A, and it is unramified
at p if and only if p does not divide DB/A.

Proof. We first consider the different ideal DB/A. By Proposition 11.11, the different re-
spects completion, so it suffices to consider the case that A and B are complete DVRs
(complete K at p and L at q and apply Theorem 11.4). We then have [L : K] = eqfq, where
eq is the ramification index and fq is the residue field degree, and pB = qeq .

Since B is a DVR with maximal ideal q, we must have DB/A = qm for some m ≥ 0.
Apply Theorem 11.23 to compute the discriminant DB/A, we have

D m fm
B/A = NB/A(DB/A) = NB/A(q ) = p .

Thus q|DB/A if and only if p|DB/A. Since A is a PID, B is a free A-module and we may
choose an A-module basis e1, . . . , en for B that is also a K-vector space for L. Let k = A/p
and let e1 denote the reduction of ei in k-algebra B/pB (which is not necessarily a field).

Since B has an A-module basis, we may compute its discriminant as

DB/A = (disc(e1, . . . , en)) = (det[TL/K(bibj)]ij).

Thus p|DB/a if and only if det[TL/K(bibj)]ij ∈ p, equivalently, the discriminant of the basis
e1, . . . , en for the k-algebra B/pB is zero. By Lemma 12.2 below, disc(e1, . . . , en) 6= 0 if and
only if the k-algebra B/pB is finite étale.

If eq > 1 then B/pB = B/qeq contains nonzero nilpotents (take any uniformizer for q)
and cannot be finite étale; in this case q|DB/A and q is ramified.

If eq = 1 then B/p = B/q is a field and (by definition) q is unramified if and only if B/q
is a separable extension of k, equivalently, a finite étale k-algebra, which we have shown
occurs if and only if q does not divide DB/A.

We now consider the discriminan∏t DB/A in the general case, where A is not necessar-
ily a complete DVR. Let D m

B/A = i q
i

i be the factorization of the different ideal. By
Theorem 11.23 we have

D m f mDB/A = NB/A( B/A) = N A

(∏
q i

B i
i

)
=
∏

p i i
/ i ,
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where pi = qi ∩A is the prime below qi. If p divides DB/A then p = pi for some qi dividing
DB/A, and this can occur only if some q|p divides DB/A, which we have already shown is
equivalent to q being ramified. Thus p divides DB/A if and only if p is ramified.

Lemma 12.2. Let k be a field and let R be a commutative k-algebra that is a finite dimen-
sional k-vector space with basis r1, . . . , rn. Then R is a finite étale k-algebra if and only if
the discriminant disc(r1, . . . , rn) = det[TR/k(rirj)]ij ∈ k is nonzero.

Proof. We first note that the choice of basis is immaterial, changing the basis will not change
whether the discriminant is zero or nonzero.

Suppose R contains a nonzero nilpotent r (meaning rm = 0 for some m > 1). In this
case R cannot be finite étale (a product of fields has no nonzero nilpotents). We can extend
{r} to a basis, so we assume r1 = r is nilpotent. Every multiple of r is also nilpotent,
and it follows that the first row of the matrix [TR/k(rirj)]ij is zero and therefore has zero
determinant. Here we have used the fact that the trace of any nilpotent element is zero
(if a is nilpotent the eigenvalues of the multiplication-by-a map must all be zero).

Suppose R contains no nonzero nilpotents. Then R is isomorphic to a product i Li
of finite extensions Li/k, and we can assume our basis contains bases for each, grouped
together so that [TR/k(rirj)]ij is block diagonal. The determinant is then nonzero if

∏
and

only if the determinant of each block is nonzero, so we can reduce to the case where R/k.
The proof then follows from the fact that the trace pairing TR/k is nondegenerate if and only
if R/k is separable (this follows from Proposition 4.58 and Problem 4 of Problem Set 2).

We now note an important corollary of Theorem 12.1.

Corollary 12.3. Assume AKLB. Only finitely many primes of A (or B) ramify.

Proof. Both A and B are Dedekind domains, so the ideals DB/A and DB/A both have unique
factorizations into prime ideals in which only finitely many primes appear.

Example 12.4. Consider A = Z, K = Q and L = Q(α), where α3 − α − 1 = 0. What is
B = OL? We know that Z[α] ⊆ OL, and that it has finite index m. We can compute the
absolute discriminant of Z[α]/Z as

disc(1, α, α2) = disc(x3 − x− 1) = −4(−1)3 − 27(−1)2 = −23.

The Z-ideal D [α]/ is principal (because Z is a PID) and therefore must be generated byZ Z
the integer −23/m2; this implies m = 1 and OL = Z[α].

We now note a number of results that allow us to explicitly compute the discriminant
and different.

Proposition 12.5. Assume AKLB. If B = A[α] for some α ∈ L and f ∈ A[x] is the
minimal polynomial of α, then

DB/A = (f ′(α))

is the B-ideal generated by f ′(α).

Proof. See Problem Set 6.
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The assumption B = A[α] in Proposition 12.5 does not always hold, but if we want to
compute the power of q that divides DB/A we can complete L at q and K at p = q∩A so that
A and B become complete DVRs, in which case B = A[α] does hold (by Lemma 10.15), so
long as the residue field extension is separable (always true if K and L are global fields, since
the residue fields are then finite, hence perfect). The following definition and proposition
give an alternative approach.

Definition 12.6. Assume AKLB and let α ∈ B have minimal polynomial f ∈ A[x]. The
different of α is defined by

δB/A(α) =

{
f ′(α) if L = K(α),

0 otherwise.

Proposition 12.7. Assume AKLB. Then DB/A =
(
δB/A(α) : α ∈ B

)
.

Proof. See [2, Thm. III.2.5].

We can now more precisely characterize the ramification information given by the dif-
ferent ideal.

Theorem 12.8. Assume AKLB and let q be a prime of L lying above p = q∩A for which
the residue field extension (B/q)/(A/p) is separable. Let s = vq(DB/A), let e = eq be the
ramification index of q over p, and let p be the characteristic of A/p. If p 6 | e then

s = e− 1

and if p|e then
e ≤ s ≤ e− 1 + evp(e)

Proof. See Problem Set 6.

We also note the following proposition, which shows how the discriminant and different
behave in a tower of extensions.

Proposition 12.9. Assume AKLB and let M/L be a finite separable extension and let C
be the integral closure of A in M . Then

DC/A = DC/B · DB/A

(where the product on the right is taken in C), and

DC/A = (DB/A)[M :L]NB/A(DC/B).

Proof. See [3, Prop. III.8].

If M/L/K is a tower of finite separable extensions, we note that the primes p of K that
ramify are precisely those that divide either DL/K or NL/K(DM/L).
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12.2 Haar measure

We now return to our discussion of local and global fields. Recall that local fields are fields
with a nontrivial absolute value that are locally compact in the corresponding topology. A
key feature of local fields, and more generally, locally compact groups, is that they can be
equipped with a Haar measure. In this section we briefly review Haar measures and show
that they give us a canonical way to normalize absolute values on nonarchimedean local
fields; this explains, for example, why we define the p-adic absolute value to be p := p−v(·);
for any 0 < c < 1, replacing p−v(·) with cv( )

|·|
· would give an equivalent absolute value that

defines the same topology on Qp, but it would not be compatible with the Haar measure
on Qp in a sense that will made clear below (see Proposition 12.14).

Definition 12.10. Let X be a locally compact Hausdorff space. The σ-algebra Σ of X is
the collection of subsets of X generated by the open and closed sets under countable unions
and countable intersections. Its elements are called Borel sets, or simply measurable sets.
A Borel measure on X is a countably additive function

µ : Σ→ R .≥0 ∪ {∞}

A Radon measure on X is Borel measure that additionally satisfies

1. µ(S) <∞ if S is compact,

2. µ(S) = inf{µ(U)|S ⊆ U,U open},
3. µ(S) = sup{µ(C)|C ⊆ S,C compact},

for all Borel sets S.1

Definition 12.11. A topological group that is both locally compact and Hausdorff is called
a locally compact group. A (left) Haar measure µ on a locally compact group (written
additively) is a nonzero Radon measure that is translation invariant, meaning that

µ(E) = µ(x+ E)

for all x ∈ X and Borel sets E.

One defines a right Haar measure analogously, but in most cases they coincide and in
our situation we are working with an abelian group (the additive group of a field), in which
case they necessarily do. The key result on Haar measures, is that they exist and are unique
up to scaling. For compact groups existence was proved by Haar and uniqueness by von
Neumann; the general result for locally compact groups was proved by Weil.

Theorem 12.12 (Weil). Every locally compact group G has a Haar measure. If µ and µ′

are two Haar measure on G then there is a positive real number λ for which µ′(S) = λµ(S)
for all measurable sets S.

Proof. See [1, §7.2].

Example 12.13. The standard Euclidean measure on Rn is the unique Haar measure on Rn
for which the unit cube has measure 1.

1Some authors additionally require X to be σ-compact (a countable union of compact sets). Local fields
are σ-compact so this distinction will not concern us.
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The additive group of a local field K is a locally compact group (it is a metric space,
so it is automatically Hausdorff). For compact groups G, it is standard to normalize the
Haar measure so that µ(G) = 1, but local fields are never compact and we will always have
µ(K) = ∞. However, the valuation ring A = B 1(0) of a local field is compact, and it is≤
natural to normalize the Haar measure so that µ(A) = 1.

For local fields with a discrete valuation, the Haar measure gives us a natural way to
define a corresponding absolute value, independent of how we normalize the Haar measure.

Proposition 12.14. Let K be a local field with discrete valuation v, residue field k, and
absolute value

| · |v := (#k)−v(·),

and let µ be a Haar measure on K. For every x ∈ K and measurable set S ⊆ K we have

µ(xS) = |x|vµ(S).

Moreover, the absolute value | |v is the unique absolute value compatible with the topology
on K for which this is true.

Proof. Let A be the valuation ring of K with maximal ideal p. The proposition clearly holds
for x = 0, so let x 6= 0. The map φx : y 7→ xy is an automorphism of the additive group of
K, and it follows that the composition µx = µ ◦φx is a Haar measure on K, hence multiple
of µ. Define the function χ : K× → R 0 by χ(x) = µx(A)/µ(A), so that µ≥ x = χ(x)µ. We
have

µxy(A)
χ(xy) =

µ(A)
=
µx(yA)

µ(A)
=
χ(x)µy(A)

µ(A)
=
χ(x)χ(y)µ(A)

= χ(x)χ(y),
µ(A)

so χ is multiplicative.
We claim that χ(x) = |x|v for all x ∈ K×. Since both χ and | · |v are multiplicative, it

suffices to consider x ∈ A\{0}. For any such x, the A-ideal xA is equal to pv(x)A, since A is
a DVR. The residue field k := A/p is finite, hence A/xA is also finite; indeed it is a k-vector
space of dimension v(x) and has cardinality [A : xA] = (#k)v(x). We can thus write A as a
finite disjoint union of cosets of xA, and this implies that

µ(A) = [A : xA]µ(xA) = (#k)v(x)χ(x)µ(A),

and therefore χ(x) = (#k)−v(x) = |x|v, as claimed.
To prove uniqueness, note that every absolute value | | on K that induces the same

topology is equivalent to | |v, hence of the form | |cv for some c > 0. If c 6= 1 we can choose
x ∈ K with |x|v 6= 1 and S ⊆ K with µ(S) 6= 0 so that

)|x| = | |cv =

(
µ(xS

x
µ(S)

)c
6= µ(xS)

,
µ(S)

and then µ(xS) 6= |x|µ(S) (we have used the fact that | |v is nontrivial and µ is nonzero).

12.3 Places of a global field

Definition 12.15. A place of a global field K is an equivalence class of non-trivial absolute
values on K. We may use MK to denote the set of places of K. We will often identify
places v with representatives | |v of their equivalence class. The place v is archimedean if
the absolute value | |v is archimedean (this does not depend on our choice of representative),
and otherwise v is nonarchimedean.
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Example 12.16. As proved in Problem Set 1, for Q we have

MQ = {| |p : primes p ≤ ∞},

where | | denotes the archimedean absolute value on Q, and for F∞ q(t) we may identify
MFq(t) with the set of irreducible polynomials in Fq[t] together with the (nonarchimedean)

absolute value |r| = qdeg r.∞

Remark 12.17. In contrast with Q, there is nothing special about the absolute value | |∞
on Fq(t), it is an artifact of our choice of the transcendental variable t. If we put z = 1/t
and rewrite Fq(t) as Fq(z), the absolute value | | is the same as the absolute value∞ | |z
corresponding to the irreducible polynomial z ∈ Fq[z].

Definition 12.18. If L/K is an extension of global fields, for every place w of L, any
absolute value | |w that represents the equivalence class w restricts to an absolute value on
K that represents a place v of K; this v is independent of the choice of | |w. We write w|v
to indicate this relationship and say that w extends v.

Example 12.19. If v is a place of a number field then v|p for some p ≤ ∞. The place v is
archimedean if v|∞, and otherwise it is nonarchimedean.

Definition 12.20. Let K be a global field. For any place v of K we use Kv to denote the
completion of K with respect to | |v (the field Kv does not depend on our choice of | |v).

Example 12.21. If K is a number field and v|p is a nonarchimedean place of K, then Kv

is a finite separable extension of Qp. If we write

K ' Q[x]/(f(x)),

then
Kv ' Qp[x]/(g(x)),

for some irreducible g ∈ Qp[x] appearing in the factorization of f in Qp[x]. When v|∞ is
archimedean, there are only two possibilities: either Kv = R or Kv = C.

Definition 12.22. Let K be a number field and let v|∞ be a place of K. If Kv ' R then v
is a real place of K. If Kv ' C then v is a complex place of K.

Theorem 12.23. Let L/K be a finite separable extension of global fields and let v be a
place of K. Then there is an isomorphism of finite étale Kv-algebras

L⊗K Kv −
∼→
∏

Lw
w|v

defined by `⊗ x 7→ (`x, . . . , `x).

Proof. If v is nonarchimedean this is just part (v) of Theorem 11.4, but we will give a
topological proof that works for both archimedean and nonarchimedean v.

By Proposition 4.34, L ⊗K Kv∏is finite étale Kv-algebra of dimension n = [L : K] and
therefore isomorphic to a product i Li of finite separable extensions Li/Kv; we just need
to show that there is a one-to-one correspondence between the Li and the completions Lw
of L at the places w|v extending v.
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Each Li is a local field, since it is a finite extension of Kv, and has a unique absolute
value | |w that extends the absolute value | |v on Kv (for any choice of | |v representing the
place v); this follows from Theorem 9.25 when v is nonarchimedean∏ and is obviously the
case if Kv ' R,C is archimedean.2 The map L ↪→ L ⊗K Kv ' i Li � Li allows us to
view L as a subfield of each Li.

We may view L ⊗K Kv ' i Li as an isomorphism of topological groups: on the LHS
the étale Kv-algebra L ⊗K K

∏
v is a finite dimensional Kv-vector space with a canonical

topology induced by the sup norm, and on the RHS we have the product topology; these
topologies coincide because the absolute value on each Li restricts to the absolute value on
Kv, allowing us to also view the RHS as a normed Kv-vector space, and all norms on a finite
dimensional vector space over a complete field induce the same topology (Proposition 9.24).
The image of the canonical embedding L ↪→ L⊗KKv defined by ` 7→ `⊗ 1 is dense because
K ⊆ L is dense in Kv; for any nonzero `⊗ x in L⊗K Kv we can approximate it arbitrarily
closely by `/y⊗ y = `⊗ 1 for some nonzero y ∈ K (and we can similarly approximate sums
of pure tensors). Thus the image of L is dense in

∏
i Li, and in each Li.

The restriction of | |w to L uniquely determines a place w|v of L, and Li is necessarily
isomorphic to the completion Lw of L with respect to | |w, because Li is complete and L is
dense in Li. We thus have a map φ : {Li} → {Lw : w|v} that sends Li to an isomorphic Lw.

For each w|v we have a map L ⊗K Kv → Lw induced by the inclusions L,Kv ⊆ Lw,
and this map is surjective because the image is both dense and complete; it follows that
φ is surjective∏. If φ is not injective then some Lw appears as two distinct Li and Lj in
L ⊗K Kv ' Li, but this is impossible because the image of the diagonal embedding
L→ Lw × Lw is not dense but the image of L is dense in Li × Lj .

Corollary 12.24. Let K be a number field and p ≤ ∞ a prime of Q. There is a one-to-
one-correspondence

HomQ(K,Qp)/Gal(Qp/Qp)←→ {v ∈MK : v|p},

between Gal(Qp/Qp)-orbits of Q-embeddings of K into Qp and the places v|p of K.

Before proving the corollary, lets make sure we understand the set of Galois orbits on
the LHS. Each σ ∈ Gal(Qp/Qp) acts on a Q-embedding τ : K → Qp by composition: σ ◦ τ
is also a Q-embedding of K into Qp.

Proof. Theorem 12.23 gives us an isomorphism K ⊗Q Qp −
∼→

∏
v K|p v. We then have

bijections of finite sets

HomQ(K,Qp)↔ HomQp(K ⊗Q Qp,Qp)

↔
⊔
v|p

HomQp(Kv,Qp),

Each HomQp(Kv,Qp) is a Gal(Qp/Qp)-orbit, because if we write Kv = Qp(α) where α ∈ Kv

has minimal polynomial f ∈ Qp[x], we have a bijection between Qp-embeddings Kv → Qp

and roots of f in Qp, and Gal(Qp/Qp) must act transitively on both.

2Note that Kv is a topological field, and the isomorphism Kv ' R or Kv ' C is an isomorphism of
topological fields whose archimedean topology is induced by an absolute value; we are always viewing R and
C as locally compact fields whose topology is induced by the standard Euclidean metric. There are plenty
of nonarchimedean topologies on R and C (for each prime p the field isomorphism Qp ' C lets us put an
extension of the p-adic absolute value on C which we can restrict to R), but none correspond to local fields
because they are not locally compact.
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The corollary implies that HomQ(K,C)/Gal(C/R) is in bijection with the set {v|∞} of
archimedean places of K; note that Gal(C/R) is just a group of order 2 whose non-trivial
element is complex conjugation. We can partition {v|∞} into real and complex places,
based on whether Kv ' R or Kv ' C. Each real place corresponds to an element of
HomQ(K,R); these are fixed by Gal(C/R) and thus correspond to trivial Gal(C/R)-orbits
of HomQ(K,C) (orbits of size one). Each complex place corresponds to Gal(C/R)-orbit of
size two in HomQ(K,C); these are conjugate pairs of embeddings K → C whose image does
not lie in R.

Definition 12.25. Let K be a number field. The elements of HomQ(K,R) are called real
embeddings. The elements of HomQ(K,C) whose image does not lie in R are called complex
embeddings.

There is a one-to-one correspondence between real embeddings and real places, but
complex embeddings come in conjugate pairs that correspond to a single complex place.

Corollary 12.26. Let K be a number field with r real places and s complex places. Then

[K : Q] = r + 2s.

Proof. Recall that [K : Q] = # HomQ(K,C) (write K = Q[x]/(f(x)) and note that the
elements of HomQ(K,C) are determined by choosing a root of f in C to be the image of x).
The action of Gal(C/R) on HomQ(K,C) has r orbits of size 1, and s orbits of size 2.

Example 12.27. Let K = Q[x]/(x3 − 2). There are three embeddings K ↪→ C, one for
each root of x3 − 2; explicitly:

(1) x
√

7→ 3
2, (2) x 7→ e2πi/3 · 3

√
2, (3) x 7→ e4πi/3 · 3

√
2.

The first embedding is real, while the second two are complex and conjugate to each other.
Thus K has r = 1 real place and s = 1 complex place, and we have [K : Q] = 1 ·1+2 ·1 = 3.

12.4 The product formula for global fields

Definition 12.28. Let K be a global field. For each place v of K the normalized absolute
value ‖ ‖v : Kv → R≥0 on the completion of K at v is defined by

µ(xS)‖x‖v := ,
µ(S)

where µ is a Haar measure on Kv and S is any measurable set with µ(S) 6= 0 (we can
always take S to be the valuation ring Av := {x ∈ Kv : |x|v ≤ 1} of Kv). Provided v is not
a complex place of K, the normalized absolute value ‖ ‖v is an absolute value on Kv (but
otherwise not, see Warning 12.31 below).

This definition is independent of the choice of µ and S. Our standard normalization
for the Haar measure on Kv is to set µ(Av) = 1 at nonarchimedean places, use the usual
Euclidean measure on R at real places (µ(Av) = 2), and twice the usual Euclidean measure
on C at complex places (µ(Av) = 2π). It follows from Proposition 12.14 that if the place v
is nonarchimedean then

‖x‖v = (#kv)
−v(x),

where kv is the residue field of Kv and the discrete valuation v(x) is uniquely determined
by the place v.
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Lemma 12.29. Let L/K be a finite separable extension of global fields, let v be a place
of K and let w|v be a place of L. Then

‖x‖w = ‖NLw/Kv
(x)‖v.

Proof. The lemma is trivial if [L : K] = 1 so we assume [L : K] > 1. If v is archimedean
then we must have Lw ' C and Kv ' R, in which case for any x ∈ Lw we have

‖x‖w = µ(xS)/µ(S) = |x|2 =C |NC/ (x)R |R = ‖NLw/Kv
(x)‖v,

where | |R and | |C are the standard Euclidean absolute values on R and C.
We now assume v is nonarchimedean. Let πv and πw be uniformizers for the local fields

Kv and Lw, respectively, and let f be the degree of the residue field extension. Without
w(x)

loss of generality, we may assume x = πw . Theorem 6.9 and Proposition 12.14 imply

‖NLw/Kv
(πw)‖v = ‖πfv ‖v = (#kv)

−f ,

so ‖NLw/Kv
(x)‖v = (#kv)

−fw(x). Proposition 12.14 then implies

‖x‖w = (#kw)−w(x) = (#k f
v)
− w(x) = ‖NLw/Kv

(x)‖v.

We now make two very important remarks about the normalized absolute value.

Remark 12.30. Note that if v is a nonarchimedean place of K extended by a place w|v
of L/K, the absolute value ‖ ‖w is not the unique absolute value on Lw that extends the
absolute value on ‖ ‖v on Kv given by Theorem 9.25, it differs by a power of n = [Lw : Kv],
but it is equivalent to it. It might seem strange to use a normalization here that does
not agree with the one we used when considering extensions of local fields in Lecture 9.
The difference is that here we are thinking about a single global field K that has many
different completions Kv, and we want our normalized absolute values on the various Kv

to be compatible (so that the product formula will hold). By contrast, in Lecture 9 we
considered various extensions Lw of a single local field Kv and wanted to normalize the
absolute values on the Lw compatibly so that we could work in Kv and any of its extensions
(all the way up to Kv) using the same absolute value. These two objectives cannot be met
simultaneously and it is better to use the “right” normalization in each setting.

Remark 12.31. When v is a complex place the normalized absolute value ‖ ‖v is not an
absolute value, because it does not satisfy the triangle inequality. For example, if K = Q(i)
and v|∞ is the complex place of K then ‖1‖v = 1 but

‖1 + 1‖v = ‖N / (2)‖ = 4 > 2 =C R ‖1‖v + ‖1‖v.

For a complex place v, the normalized absolute value ‖ ‖v on Kv ' C is the square of the
standard absolute value on C and does not satisfy the triangle inequality (this problem does
not arise with nonarchimedean absolute values; every positive power of a nonarchimedean
absolute value is also an absolute value). But ‖ ‖v is multiplicative, and it is compatible
with the topology on Kv in the sense that the open balls B<r(x) := {y ∈ Kv : ‖y−x‖v < r}
are a basis for the topology on Kv; these are the properties that we care about for the
product formula (and for the topology on the ring of adéles AK that we will see later).
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Theorem 12.32 (Product Formula). Let L be a global field. For all x ∈ L× we have∏
‖x‖v = 1,

v∈ML

where ‖ ‖v denotes the normalized absolute value for each place v ∈ML.

Proof. The global field L is a finite separable extension of K = Q or K = Fq(t).3 Let p be
a place of K. By Theorem 12.23, any basis for L as a K-vector space is also a basis for

L⊗K Kp '
∏

Lv.

v|p

Thus
NL/K(x) = N(L KKp)/Kp

(x) =⊗
∏

NLv/Kp
(x).

v|p

Taking normalized absolute values on both sides,∥∥NL/K(x)
∥

=
∏

=
p

‖NLv/Kp
(x)‖p

v|p

∏
‖x‖v.

v|p

We now take the product of both

∥
sides over all places p ∈MK :∏

‖NL/K(x)‖p =
∏ ∏

‖x‖v =
∏
‖x‖v.

p∈MK p∈MK v|p v∈ML

The LHS is equal to 1, by the product formula for K (proved on the first problem set).
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