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14 Dirichlet’s unit theorem

Let K be a number field with ring of integers OK . The two main theorems of classical
algebraic number theory are:

(1) The class group clOK of a number field is finite.

(2) The unit group OK
× of a number field is finitely generated of rank r + s− 1.

We proved (1) in Lecture 13, along with several other finiteness results. Today we will
prove (2), which is known as Dirichlet’s Unit Theorem. Dirichlet (1805–1859) died five
years before Minkowski (1864–1909) was born, so he did not have Minkowski’s Lattice
Point Theorem to work with. But we do, and we won’t be shy about using it; this makes
the proof of Dirichlet’s theorem easier for us than it was for him.

14.1 The group of multiplicative divisors of a global field

As in previous lectures we use MK to denote the set of places (equivalence classes of absolute
values) of a global field K, and for each v ∈ MK we use ‖ ‖v to denote the normalized
absolute value for v, which we recall is not an absolute value when v is a complex place (it
is the square of the usual absolute value on C), but it is multiplicative and compatible with
the topology on Kv (see Remark 12.31).

Definition 14.1. Let K be a global field. An MK-divisor is a sequence of positive real
numbers c = (cv) indexed by v ∈ MK such that for all v <∞ we have cv = ‖x‖v for some
x ∈ K×, and cv = 1 for all but finitely many v. The set of MK-divisors is an abelian
group under multiplication (cv)(dv) := (cvdv). The multiplicative group K× is canonically
embedded in MK via the map x 7→ (‖x‖v); such MK-divisors are said to be principal, and
the form a subgroup. The size of an MK-divisor is the real number

‖c‖ :=
∏

cv ∈ R>0,
v∈MK

and we note that the map from the group of MK-divisors to R× defined by c 7→ ‖c‖ is group
homomorphism that contains the subgroup of principal MK-divisors in its kernel (by the
product formula). Corresponding to each MK-divisor c is a subset L(c) of K defined by

L(c) := {x ∈ K : ‖x‖v ≤ cv for all v ∈MK}.

Remark 14.2. MK-divisors are the multiplicative analog of divisors of a smooth projective
curve X/k. Recall that a divisor D ∈ DivX is a formal sum D = nPP over the closed

¯points of the curve X (Gal(k, k)-orbits of projective points, equivalen

∑
tly, maximal ideals

in the coordinate ring of some affine piece of X), where each nP ∈ Z and all but finitely
many nP are zero. Associated to each divisor is the Riemann-Roch space

L(D) := {f ∈ k(X) : vP (f) ≥ −nP for all closed points P ∈ X},

which is a k-vector space of finite dimension. If k is a finite field then K = k(X) is a global
field and there is a one-to-one correspondence between closed points of X and places in MK ,
and a normalized absolute value ‖ ‖P for each closed point P (indeed, one can take this
as a definition). The constraint vP (f) ≥ −nP is equivalent to ‖f‖P ≤ (#κ(P ))nP , where
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κ(P ) is the residue field. If we let cP := (#κ(P ))nP then c = (cP ) is an MK-divisor with
L(c) = L(D). The Riemann-Roch space L(D) is finite (since k is finite), and we will prove
below that this also holds for L(c) when K is a number field; in this case L(c) is not a
vector space, but it is a finite set.

In §6.2 we described the divisor group DivX as the additive analog of the ideal group IA
of the ring of integers A = OK (equivalently, the coordinate ring A = k[X]) of the global
function field K = k(X). This is correct when X is an affine curve, but here X is a smooth
projective curve and has “points at infinity” corresponding to places in MK that do not
arise from prime ideals of OK but do arise from discrete valuations on K (in contrast to the
number field case, these “places at infinity” are nonarchimedean). Taking the projective
closure of an affine curve corresponds to including all the factors in the product formula and
is precisely what is needed to ensure that principal divisors have degree 0 (every function
f ∈ k(X) has the same number of zeros and poles, when counted correctly).

Example 14.3. Let K = Q(i). The ideal (2 + i) lying above 5 is prime and corresponds
to a nonarchimedean place v1 <∞, and there is a unique archimedean place v2|∞ which is
complex. Let cv1 = 1/5, let cv2 = 10, and set cv = 1 for all other v ∈ MK . The image of
L(c) = {x ∈ (2 + i) : |x| ≤ 10} under the canonical embedding C∞
lattice points in the ideal (2 + i) that lie within a circle of radius

√K ↪→ KR ' is the set of
10 in the complex plane.

Note that C
radius

√ ‖x‖v2 is the square of the usual absolute value on , which is why the circle has
10 rather than 10.

√
10

The set L(c) is clearly finite; it contains exactly 9 points.

Now let K be a number field with ring of integers OK and let c be an MK-divisor. We
may associate to c a fractional ideal of OK

Ic :=
v

∏
q−v(cv)v

<∞

which we note contains the set L(c). We then have

‖c‖ = N(Ic)
−1

v

∏
cv, (1)

|∞
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where N(Ic) is the absolute norm (a positive generator for NK/ (IQ c)). We also define

Rc := {x ∈ KR : |x|v ≤ cv for all v|∞},

which we note is compact, convex, symmetric subset of the real vector space

KR = K ⊗Q R ' Rr × Cs ' Rn,

where n = r + 2s = [K : Q], r is the number of real places in MK , and s is the number of
complex places (pairs of distinct complex conjugate embeddings {σ, σ̄} ∈ HomQ(K,C)).

Lemma 14.4. Let c be an MK-divisor of a number field K. Then L(c) is a finite set.

Proof. Let Λc be the image of Ic under the canonical embedding K ↪→ K ⊗Q R = KR; then
the image of L(c) in KR is equal to Λc ∩Rc. The free Z-module Λc is a lattice in KR, and
in particular, discrete, so its intersection with the compact set Rc is finite.

Proposition 14.5. Let K be a number field of degree n = r + 2s, with r real places and s
complex places. Define

BK :=

√
|discOK |

2n,
2r(2π)s

and let c be any MK-divisor for which ‖c‖ > BK . Then L(c) contains an element of K×.

Proof. Let Λc be the image of the fractional ideal Ic ⊆ K in KR. We apply Minkowski’s
lattice point theorem to the convex symmetric set S := Rc and lattice Λc in KR. Let µ be
the normalized Haar measure on KR; as explained in 13.2 this means that µ(S) = 2sµRn(S),
where µRn is the standard Lebesgue measure on Rn ' KR. For real places v ∈ MK the
constraint |x|v ≤ cv contributes a factor of 2cv to µRn(S), and for complex v ∈ MK the
constraint

√|x|v = |x|2 ≤ cv contributes a factor of πcv (area of a circle of radius cv). Thus

µ(S) 2sµRn(S)
=

covol(Λc) covol(Λc)
=

2s (
∏
v real 2cv)

(∏
v complex πcv

)
∏ covol(Λc)

2r(2π)s v c
=

|∞ v√
| discOK |N(I)

=
2r(2π)s√
| discOK |

‖c‖ =
‖c‖

2n > 2n
BK

where we used Corollary 13.15 and (1) in the second line. Corollary 13.12 implies that
S = Rc contains a nonzero element of Λc; therefore L(c) contains an element of K×.

Remark 14.6. The bound in Proposition 14.5 can be turned into an asymptotic, that is,
for MK-divisors c, as ‖c‖ → ∞ we have

#L(c) =

(
2r(2π)s√ + o(1)
discOK |

)
‖c‖. (2)

|

This can be viewed as an analog∑ of the Riemann-Roch theorem for function fields, which
states that for divisors D = nPP ∈ DivK, as degD := nP →∞ we have

dimk L(D) = 1− g + degD

∑
. (3)

The constant g is the genus, an important invariant of the function field K which is often
defined by (3); one could similarly use (2) to define | discOK |, equivalently, the discriminant
ideal DK/ . For sufficiently large cQ ‖ ‖ the o(1) error term will be small enough so that (2)
uniquely determines | discOK | ∈ Z. Conversely, with a bit more work one can adapt the
proofs of Lemma 14.4 and Proposition 14.5 to give a proof of the Riemann-Roch theorem
for global function fields.
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14.2 The unit group of a number field

Let K be a number field with ring of integers OK . The multiplicative group OK
× , the group

of units in OK , is the unit group of OK , and (as an abuse of terminology) of K; of course
the unit group of K is K× = K −{0}, but this abuse of language is standard and generally
causes no harm; one usually refers to K× as the multiplicative group of a field K, not its
unit group.

Let us now define the topological group

K× := × ×,R
real

∏
R

|∞ complex

∏
C

v v|∞

which we view as a subset of KR ' Rr × Cs with elements represented as tuples (xv)v|∞
consisting of r real numbers and s complex numbers. Multiplication is defined component-
wise, and we give K× the subspace topology from KR (which makes multiplication andR
inversion continuous). Note that the topologies on Rn and Rr × Cs are identical under the
map that sends pairs (x, y) of real numbers to the complex number x+iy; the multiplication
is different, but it is continuous in both cases.

We now define a surjective morphism of locally compact groups

Log : K×R → Rr+s

(xv) 7→ (log ‖xv‖v).

The map is continuous because log : R× → R is continuous, and it is a homomorphism
because log ‖xvyv‖v = log(‖xv‖v‖yv‖v) = log ‖xv‖v + log ‖yv‖v; note that we are using
the fact that the normalized absolute value ‖ ‖v is multiplicative (even when it is not an
absolute value). We may embed K× in K× via the map xR 7→ (σv(x))v, by fixing a choice
of σv ∈ HomQ(K,C) corresponding to each archimedean place v|∞. When v is real there
is only one choice for σv, but when v is complex there are two choices which are complex
conjugates. No matter which we pick, the induced map Log : K× → Rr+s is uniquely
determined, since

‖σv(x)‖v = |σ 2
v(x)| = σv(x)σ̄v(x).

We then have a commutative diagram of locally compact groups:

K× K×R Rr+s

Q× R× R,

NK/Q

Log

N T

log | |

where the norm map N: K×R → R× is defined by

N(x) :=
∏

xv
∏

‖xv‖v =
∏

xv xvx̄v,
v real v complex v real v complex

∏
and the trace map T: Rr+s → R is defined by T(x) = i xi.

To check commutativity of the left square, note that

∑
for all x ∈ K× we have

NK/ (x) = σ(x) =Q
σ∈Hom

∏
Q(K,C) v

∏
σv(x) σv(x)σ̄v(x) = N((σv(x))v),

real v complex

∏
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To check the commutativity of the diagram as a whole, note that for all x ∈ K× we have

log |NK/ (x)| =
∑

log |σ(x)Q |
σ∈HomQ(K,C)

=
∑

log |σv(x)|+ (log |σv(x)|+ log |σ̄v(x)|)
v∑real v complex

∑
= log |σv(x)|+ log |σv(x)|2

v real v complex

∑
=
∑

log ‖σv(x)‖v +
∑

log ‖σv(x)‖v
v real v complex

= T((σv(x))v).

independent of the choices for σv that we used to embed K× in K×. Note that it is crucialR
here that we used the normalized absolute value ‖ ‖v when defining Log. In view of the
commutativity of the above diagram, we may also view Log as a map from K× to Rr+s via
the embedding K× ↪→ K×, and similarly view N = NR K/ as a map from K× to R×. WeQ
can then succinctly summarize the commutative of the whole diagram by writing

T(Log(x)) = log |N(x)|

for all x ∈ K× (and for all x ∈ K×).R
We now note that elements of the unit group OK

× all have norm ±1, since their norms
must be units in Z; they therefore lie in the kernel of the map x 7→ log |N(x)| and therefore
also in the kernel of x 7→ T(Log(x)). This implies that Log(OK

× ) is a subgroup of the trace
zero hyperplane

Rr+s0 := {x ∈ Rr+s : T(x) = 0},

which we note is both a subgroup of Rr+s, and an R-vector subspace of dimension r+s−1,
by the linearity of the trace map T.

Proposition 14.7. Let K be a number field with r real and s complex places, and let ΛK
be the image of the unit group OK

× in Rr+s under the Log map. The following hold:

(1) We have a split exact sequence of abelian groups

0→ (OK
× )tors → OK

× −Log→ ΛK → 0;

(2) The torsion subgroup (OK
× )tors of the unit group is finite;

(3) ΛK is a lattice in the trace zero hyperplane Rr+s0 .

Log
Proof. Let Z be the kernel of OK

× −→ ΛK . To prove (1) we first show Z = (OK
× )tors. Let c

be the MK-divisor with Ic = OK and cv = 2 for v|∞, so that

L(c) = {x ∈ OK : ‖x‖v ≤ 2 for all v|∞}.

For x ∈ OK
× we have

x ∈ L(c)⇐⇒ Log(x) ∈ LogRc = {z ∈ Rr+s : zi ≤ log 2}.
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The set on the RHS includes the zero vector, thus Z ⊆ L(c), which by Lemma 14.4 is a
finite set. As a finite subgroup of K

× , we must have Z ( K
× )tors.

Now Λ is a subgroup of Rr+s
O ⊆ O

K , hence torsion free, so the image of (OK
× )tors in ΛK must

be {0}. Thus (OK
× )tors ⊆ Z and Z = (OK

× )tors as claimed; this also proves (2) since Z ⊆ L(c)
is finite. It follows that the sequence in (1) is exact, and since (OK

× )tors is torsion and ΛK
is free, it must split (by the structure theorem for finite abelian groups); this proves (1).

For (3) we note that ΛK ∩Log(Rc) = Log OK
× ∩ L(c) is a finite set, since L(c) is finite;

it follows that 0 is an isolated point of Λ in s
K Rr+s, and in in the subgroup Rr+0 , therefore

Λ is a discrete subgroup of Rr+sK 0 . It remains

(
only to sho

)
w that it spans Rr+s0 (this will

imply it is cocompact and therefore a lattice, by Proposition 13.2).
Let V be the subspace of Rr+s0 spanned by Λ r+s r+s

K . If dimV < dimR0 then R0 contains
a unit vector w orthogonal to V . For every λ ∈ R>0 the open ball of radius λ about λw
does not intersect ΛK ; thus we can find points in Rr+s0 that are arbitrarily far away from
every point in ΛK . To prove that ΛK spans Rr+s0 it suffices to show that there is an upper
bound on the maximum distance between any point h ∈ Rr+s0 and the closest point in ΛK .

Fix B > BK , where BK is as in Proposition 14.5, so that every MK-divisor c with
‖c‖ ≥ B has L(c) containing a nonzero element. Let (α1), . . . , (αm) be the list of all
nonzero principal ideals with N(αj) ≤ B (this is a finite list, by Lemma 13.19). Fix a vector
b ∈ Rr+s for which T(b) = i bi = logB. Notice that the bound BK , the generators αj ,
and the vector b have all been

∑
fixed independent of any particular h.

Now let h be a point in Rr+s0 , and define the MK divisor c by Ic := OK and for v|∞
let cv := exp(hi + bi), where i is the coordinate in Rr+s corresponding to v under the Log
map. Noting that T(h) = 0 (because h ∈ Rr+s0 ), we have

‖c‖ =
∏

cv = exp
(∑

(hi+bi)
)

= exp(T(h+b)) = exp(T(h)+T(b)) = exp(T(b)) = B > BK ,
v i

so L(c) contains a nonzero γ ∈ OK , by Proposition 14.5. Let g = Log(γ) ∈ Rr+s. For
1 ≤ i ≤ r + s we have gi ≤ log cv = hi + bi, where v|∞ is the place corresponding to the
index i, and therefore

log |N(γ)| = T(Log(γ)) ≤ T(h+ b) = T(b) = logB,

thus |N(γ)| ≤ B and we must have (γ) = (αj) for one of the αj fixed above. Then
γ/αj ∈ OK

× is a unit, and

Log(γ/αj) = Log(γ)− Log(αj) ∈ ΛK .

Now b was fixed independent of h, so the vector g = Log(γ) is within a bounded distance
of h, and the αj were also fixed independent of h, so the vector Log(γ/αj) ∈ ΛK is also
within a bounded distance of h, and this bound is independent of h. It follows that there
is some absolute constant C such that every h ∈ Rr+s0 there is an element of ΛK within a
distance C of h; therefore ΛK must span Rr+s0 as desired.

Dirichlet’s unit theorem follows is an immediate corollary of Proposition 14.7.

Theorem 14.8 (Dirichlet Unit Theorem). Let K be a number field with r real and s
complex places. The unit group OK

× is a finitely generated abelian group of rank r + s− 1.

Proof. The image of the torsion-free part of the unit group OK
× under the Log map is the

(full) lattice ΛK in the trace-zero hyperplane Rr+s0 , which has dimension r + s− 1.
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Example 14.9. Let K = Q(
√
d) ⊆ R with d > 1 squarefree. Then r = 2 and s = 0 and

the unit group OK
× has rank r + s − 1 = 1. The only torsion elements of OK

× ⊆ R are ±1,
thus

OK
× = {±εn : n ∈ Z},

for some ε ∈ OK
× of infinite order. We may assume ε > 1: if ε < 0 then replace ε by −ε, and

if ε < 1 then replace ε by ε−1 (we cannot have ε = 1).
The assumption ε > 1 uniquely determines ε. This follows from the fact that for ε > 1

we have |εn| > |ε| for all n > 1 and |εn| ≤ 1 for all n ≤ 0.
This unique ε is called the fundamental unit of OK (and of K). To explicitly determine ε,

let D = discOK (this means D = d for d = 1 mod 4 and D = 4d otherwise). Every element
of OK can be uniquely written as

x+ y
√
D
,

2

where x and Dy are integers of the same parity. In the case of a unit we must have
x+y
√

N( D ) =2 ±1, equivalently,
x2 −Dy2 = ±4. (4)

Conversely, any solution (x, y) ∈ Z2 to the above equation has x and Dy with the same
x+y
√

parity and corresponds to an element of OK
× . The constraint ε = D

2 > 1 forces x, y > 0.

This follows from the fact that ε−1 = |x−y
√
D|

2 < 1, so −2 < x− y
√
D < 2, and then adding

and subtracting x+ y
√
D > 2 shows x > 0 and y > 0 (respectively).

Thus√we need only consider positive integer solutions (x, y) to (4). Among such solutions,
x1 + y1 D < x2 + y2

√
D implies x1 < x2, so the solution that minimizes x will give us the

fundamental unit ε.
Equation (4) is a (generalized) Pell equation. Solving the Pell equation is a well-studied

problem and there are a number of algorithms for doing so. The most well known uses
continued fractions and is explored on Problem Set 7; this is not the most efficient method,
but it is dramatically faster than an exhaustive search; see [1] for a comprehensive survey. A
remarkable feature of this problem is that even when D is quite small, the smallest solution
to (4) may be very large. For example, when D = d = 889 the fundamental unit is

26463949435607314430 + 887572376826907008
√

ε =
889

.
2

14.3 The regulator of a number field

Let K be a number field with r real places and s complex places, and let Rr+s0 be the
trace-zero hyperplane in Rr+s. Choose any coordinate projection π : Rr+s → Rr+s−1, and
use the induced isomorphism Rr+s −∼→ Rr+s0

−1 to endow Rr+s0 with a Euclidean measure.
By Proposition 14.7, the image ΛK of the unit group OK

× is a lattice in Rr+s0 , and we can
measure its covolume using the Euclidean measure on Rr+s0 .

Definition 14.10. The regulator of a number field K is

RK := covol(π(Log(OK
× ))) ∈ R>0,

where π : Rr+s → Rr+s−1 is any coordinate projection. The real number RK does not
depend on the choice of π. If ε1, . . . , εr+s 1 is a fundamental system of units (a Z-basis for−
the free part of OK

× ), then RK can be computed as the absolute value of the determinant
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of any (r+ s− 1)× (r+ s− 1) minor of the (r+ s)× (r+ s− 1) matrix whose columns are
the vectors Log(εi) ∈ Rr+s.

Example 14.11. If K is a real quadratic field with discriminant D = discOK and fun-
x+y
√

damental unit ε = D , then r + s = 2 and the product of the two real embeddings2
σ1(ε), σ2(ε) ∈ R is N(ε) = ±1. Thus log |σ2(ε)| = − log |σ1(ε)| and

Log(ε) = (log |σ1(ε)|, log |σ2(ε)|) = (log |σ1(ε)|,− log |σ1(ε)|).

Both 1 × 1 minors of the 2 × 1 transpose of Log(ε) have determinant ± log |σ1(ε)|; the
absolute value of the determinant does not depend on the minor we pick.

References

[1] Michael J. Jacobson and Hugh C. Williams, Solving the Pell equation, Springer, 2009.

18.785 Fall 2015, Lecture #14, Page 8

http://link.springer.com/book/10.1007%2F978-0-387-84923-2


MIT OpenCourseWare
http://ocw.mit.edu

18.785 Number Theory I
Fall 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	
	Dirichlet's unit theorem
	The group of multiplicative divisors of a global field
	The unit group of a number field
	The regulator of a number field




