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17 Dirichlet characters and primes in arithmetic progres-
sions

Having proved the Prime Number Theorem, we would like to prove an analogous result
for primes in arithmetic progressions. We begin with Dirichlet’s theorem on primes in
arithmetic progressions, a result that predates the prime number theorem by nearly sixty
years (indeed Dirichlet died 37 years before the prime number theorem was proved).

Theorem 17.1 (Dirichlet 1837). For every a,m ∈ Z 1 with gcd(a,m) = 1 there are≥
infinitely many primes p ≡ a mod m.

In fact Dirichlet proved more than this. In a sense that we will make precise below, he
proved that for any fixed modulus m ≥ 1 the primes are equidistributed among the residue
classes in (Z/mZ)×. The equidistribution statement that Dirichlet was able to prove is a
bit weaker than one might like, but it is more than enough to establish Theorem 17.1.

Remark 17.2. Many of the standard tools of complex analysis that we take for granted
were not available to Dirichlet in 1837. Riemann was the first to seriously study ζ(s) as
a function of a complex variable, some twenty years after Dirichlet proved his theorem on
primes in arithmetic progressions. Rather than retracing Dirichlet’s steps exactly, we work
in a more modern setting, but our proof is still very much in the spirit of Dirichlet.

17.1 Infinitely many primes

To motivate Dirichlet’s method of proof, let us consider the following proof that there are
infinitely many primes. To prove this, it suffices to show that the Euler product

ζ(s) =
∏

(1 p
p

− −s)−1

diverges as s→ 1+. Of course we know this to be the case, since ζ(s) has a pole at s = 1,
but let us proceed by taking logarithms and showing that the sum

log ζ(s) = −
∑

log(1
p

− p−s) =
∑

p−s +O(1) (1)
p

diverges as s→ 1+, since we have the asymptotic bounds

− log(1− x) = x+O(x2) (as x→ 0) and
∑

O(p−2s) = O(1) (Re(s) > 1/2).
p

We can estimate
∑ 1

p≤x p via Mertens’ second theorem, one of three he proved in [4].

Theorem 17.3 (Mertens 1874). As x→∞ we have

(1)
∑
p≤x

log p = log x+R(x), wherep |R(x)| < 2.1

(2)
∑

1

p≤x
p = log log x+B +O

(
1

log x

)
, where B = 0.261497 . . . is Mertens’ constant;

1In fact, R(x) = −B3 + o(1) where B3 = 1.332582 . . . is an explicit constant.
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(3)
∑
p≤x

log
(
1− 1 =p

)
−log log x− γ +O

(
1 ,log x

)
where γ = 0.577216 . . . is Euler’s constant.

Proof. See Problem Set 9.

Thus not only does
∑
p−s diverge as s→ 1+, we can say with a fair degree of precision

how quickly this happens. We should note, however, that the estimate provided by Mertens’
2nd theorem is not as strong as that given by the prime number theorem. Indeed, as you
will prove on Problem Set 9, the Prime Number Theorem is equivalent to the statement∑ 1

p≤x
p

= log log x+B + o
(

1 ,log x

)
which is (ever so slightly) sharper than Mertens’ estimate.23

17.1.1 Infinitely many primes congruent to 1 modulo 4

To see how the argument above generalizes to primes in arithmetic progressions, let us prove
that there are infinitely many primes congruent to 1 mod 4. We might initially consider∏

(1− p−s)−1 = n−s,
p≡ 1 mod 4 n 1

p|n p

∑
≥

⇒ ≡ 1 mod 4

but the sum on the RHS is a bit awkward. Let us instead define a Dirichlet character1 if n ≡ 1 mod 4,

χ(n) := −1 if n ≡ −1 mod 4,

0 otherwise,

and consider the Dirichlet L-function

L(s, χ) :=
∏

(1− χ(p)p−s)−1 = χ(n)n−s = 1 3−s + 5−s 7−s + 9−s + .
p n

∑
− − · · ·

≥1

As s→ 1+ we have

logL(s, χ) = −
∑

log(1− χ(p)p−s) = O
p

∑
χ(p)p−s + (1)

p

= p−s − p−s + O(1),
p≡

∑
1 mod 4 p≡ 3

∑
mod 4

and
log ζ(s) =

∑
p−s +

∑
p−s +O(1),

p≡ 1 mod 4 p≡ 3 mod 4

thus
log ζ(s) + logL(s, χ)

=
2

p≡

∑
p−s +O(1).

1 mod 4

2In fact the error term in the PNT implies
∑

1
p≤x p

= log log x + B + O
(
1 .
x

3The fact that the difference between a little-o and a big-O is the difference

)
between proving a celebrated

theorem and not proving it emphasizes how critical it is to understand error terms.
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Provided logL(s, χ) = O(1) as s→ 1+, the LHS (and hence the RHS) must tend to infinity
as s→ 1+, since ζ(s)→∞ as s→ 1+. It thus suffices to show that L(s, χ) has an analytic
continuation to a neighborhood of 1, and that L(1, χ) 6= 0. Assuming this is the case,

p

∑ 1

≤x
p≡ 1 mod 4

p
=

1
log log x+O(1).

2

and Mertens’ 2nd theorem implies that the same holds if we instead sum over p ≡ 3 mod 4.
The primes are thus equidistributed modulo 4 in the sense that for m = 4 and all integers
a coprime to m we have ∑ 1

p≤x
p≡ a mod m

p
∼ 1

φ(m)

∑
p≤x

1

p
∼ 1

log log x
φ(m)

We should note that this statement is weaker than what is known as the “prime number
theorem for arithmetic progressions”, which states that

1
π(x;m, a) ∼ π(x),

φ(m)

where π(x;m, a) counts the primes p ≤ x for which p ≡ a mod m.
Dirichlet did not have Mertens’ asymptotic bounds so he stated his results in a different

form by defining what is now called the Dirichlet density of a set of primes S,

s
p

d(S) := lim
→1+

∑
∈S p

−

s

whenev

∑ ,
s

p p
−

which is defined er this limit exists (one can also define notions of lower and upper
Dirichlet density using lim inf and lim sup that are always defined). This definition differs
from the more common natural density

#
δ(S) := lim

{p ≤ x : p ∈ S}
x→∞

.
#{p ≤ x}

Dirichlet proved that for m ≥ 1 and a relatively prime to m the set of primes p ≡ a mod m
has Dirichlet density 1/φ(m), whereas the prime number theorem for arithmetic progressions
states that this set has natural density 1/φ(m). One can show that if a set of primes S has
a natural density then it has a Dirichlet density and the two are equal, but the converse
need not hold: there are sets of primes that have a Dirichlet density but no natural density.

In order to complete our proof that there are infinitely many primes p ≡ 1 mod 4, we
need to show L(1, χ) 6= 0. To do this we need to consider the Dedekind zeta function of a
number field K,

ζK(s) := N(I)−s = (1
I p

−N(p)−s)−1,

here the sum ranges over nonzero

∑
ideals of the ring

∏
of integers OK , the product ranges over

nonzero prime ideals of OK (primes of K), and N(I) := [OK : I] is the absolute norm.4

Note that ζQ(s) = ζ(s), so this is a natural generalization of the Riemann zeta function.

4The Dedekind zeta function is named after Richard Dedekind, the last doctoral student of Gauss. He
received his Ph.D. in 1854, the same year as Riemann, another student of Gauss; Dedekind and Riemann
both studied under Dirichlet as well.
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The proof that the Euler product converges for Re(s) > 1 is just a generalization of the
proof for ζQ(s) = ζ(s); we now use unique factorization of ideals in the Dedekind domain
OK to convert the sum over ideals I into a product over prime ideals p. The number of
prime ideals p lying above any particular prime p is at most n = [K : Q], and for Re(s) > 1
we have |N(p)−s| ≤ |p−s| for each p|p. We thus have∑∣∣log(1 N

p

− (p)−s)
∣∣ ≤ n

∑
log(1 p−s) ,

p

∣
−

∣
and since the later sum converges, so does the former.

∣ ∣
We are interested in the case K = Q(i). We can rewrite the Euler product for ζK(s) as

ζK(s) =
∏

(1 N(p)−s)−1∏p −

=
∏

(1−N(p)−s)−1

p p|p

= (1− 2−s)−1
∏

(1− p−s)−1(1− p−s)−1
p≡1 mod 4 p≡3

∏
(1− p−2s)−1

mod 4

= (1− 2−s)−1
∏

(1− p−s)−1(1− p−s)−1
∏

(1− p−s)−1(1 + p−s)−1

∏ p≡1

= (1− p−s)−1
p

= ζ(s)L(s, χ).

∏mod 4 p≡3 mod 4

(1
p

− χ(p)p−s)−1

In the calculation above we have use the fact that we have

• one prime p of norm N(p) = 2 above the unique prime 2 that ramifies in Q(i);

• two primes p, p̄ of norm N(p) = N(p̄) = p above each prime p that spits in Q(i),
equivalently, the primes p ≡ 1 mod 4;

• one prime p of norm N(p) = p2 above each prime p that remains inert in Q(i),
equivalently, the primes p ≡ 3 mod 4.

We now note that ζ(s) has a simple pole at s = 1, so if we can show that ζK(s) extends to
a meromorphic function that has a simple pole at s = 1 then we will know that (1) L(s, χ)
extends to a meromorphic function on a region that includes s = 1 (since it is the ratio of
two such functions); and (2) L(1, χ) 6= 0, since we must have ords=1L(s, χ) = 0.

In fact ζK(s) does extend to a meromorphic function on Re(s) > 1 with a simple pole2
at s = 1; this can be proved directly, but it follows from a much more general and striking
result, the analytic class number formula, which was also proved by Dirichlet (at least for
quadratic fields). We will prove the analytic class number formula in the next lecture; in the
remainder of this lecture will will focus on generalizing our argument above to arbitrary m.

17.2 Characters of finite abelian groups

Our first step is to generalize the Dirichlet character χ that we defined above; for this we
need to recall a few facts about characters of finite abelian groups; the domain Z of the
Dirichlet character χ we used in the case m = 4 is not a finite abelian group, but χ restricts
to a character of the multiplicative group (Z/4Z)×.

18.785 Fall 2015, Lecture #17, Page 4



Definition 17.4. A character of a finite abelian group G is a homomorphism χ : G→ U(1),
where U(1) := {z ∈ C : |z| = 1} is the unitary group. The character group (or dual group)
of G is the abelian group

G∧ := hom(G,U(1))

under point-wise multiplication: (χ1χ2)(g) := χ1(g)χ2(g). The inverse is given by complex
conjugation χ−1(g) = χ(g) := χ(g), and the identity is the trivial character, which sends
every g ∈ G to 1 ∈ U(1).

Proposition 17.5. Let G be a finite abelian group with character group G∧. Then G ' G∧.

Proof. Write G as a direct product of cyclic groups G = 〈g1
e1

〉 × · · · × 〈gn〉, so that each
element of G can be uniquely represented as g1 · · · genn with ei ∈ [0, ni− 1], where ni = |gi|.
For each gi pick a primitive nith root of unity αi ∈ C×. Define the map ϕ : G→ G∧ by

ϕ(ge11 · · · g
en f e
n ) := (g 1 f

1 , . . . , g
fn
n ) 7→ α 1 1 · · ·αenfn1 n .

We have ϕ(g)(h1)ϕ(g)(h

(
2) = ϕ(g)(h1h2), so ϕ(g) is a well-defined elemen

)
t of G∧, and we

also note that ϕ(g)ϕ(h) = ϕ(gh), so ϕ : G→ G∧ is a homomorphism,
Let µni denote the ni-torsion subgroup of U(1) (the group of nith roots of unity). Let

εi : µni → Z/niZ be the unique isomorphism for which εi(αi) = 1. Define ψ : G∧ → G by

ε (χ(g ))
ψ(χ) := g 1 1

1 · · · gεn(χ(gn))n .

eWe have εi(χ(g i
i )) = ei, for each i ∈ [1, n] and ei ∈ [1, ni], thus ψ ◦ ϕ and ϕ ◦ ψ are both

identity maps and ϕ and ψ are inverse isomorphisms.

Corollary 17.6. Let G be a finite abelian group. Then g ∈ G is the identity if and only if
χ(g) = 1 for all χ ∈ G∧ and χ ∈ G∧ is the identity if and only if χ(g) = 1 for all g ∈ G.

Proof. This is clear when g or χ is the identity. If g 6= 1G then we can choose g1 with order
n1 > 1 as in the proof of the proposition so that g ∈ 〈g1〉, and if we then put χ = ψ(g) we
have χ(g) = α1 6= 1. If χ 6= 1G∧ then by definition, χ(g) 6= 1 for some g ∈ G. The second
statement is immediate.

The isomorphism in Proposition 17.5 is not canonical. Indeed, there are #Aut(G)
distinct ways to choose the αi used to construct the isomorphism ϕ. But there is a canonical
isomorphism from G to G∧∧ (the character group of G∧).

Corollary 17.7. Let G be a finite abelian group. The evaluation map

g 7→ (χ 7→ χ(g))

is a canonical isomorphism from G to G∧∧.

Proof. If g is in the kernel of this map, then χ(g) = 1 for all χ ∈ G∧ and therefore g = 1G,
by Corollary 17.6, and G ' G∧ ' G∧∧, so it is an isomorphism.

Corollary 17.7 allows us to view G as the character group of G∧ by defining g(χ) := χ(g).
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Remark 17.8. Corollary 17.7 is a special case of Pontryagin duality, which applies to any
locally compact abelian group G. In general, the dual group G∧ is the group of continuous
homomorphisms from G to U(1); when G is finite with the discrete topology, every homo-
morphism is continuous so the continuity requirement is superfluous. For infinite groups,
G and G∧ need not be isomorphic, for example, Z∧ ' U(1) is uncountable, but in some
cases they are; this holds for R and Qp, and in fact for any local field k; see [3, XV, Lemma
2.2.1]. But in every case, the canonical isomorphism G ' G∧∧ always holds.

This is analogous to the situation with vector spaces: finite dimensional vector spaces
are isomorphic to their dual, infinite dimensional vector spaces need not be, but every vector
space V is canonically isomorphic to its double-dual (and the isomorphism is given by the
evaluation map). But we should note that for a locally compact topological vector space V
over a field k, the Pontryagin dual is not the same thing as the vector space dual; in the
former case we are considering continuous homomorphisms from the additive group of V
to U(1), whereas in the later we are considering linear maps from V to k; for example, the
vector space dual Q∨ is isomorphic to Q but the Pontryagin dual of Q is uncountable.

Proposition 17.9. Let G be a finite abelian group. For all g1, g2 ∈ G we have

1〈g1, g2〉 :=
#G

∑
χ∈G∧

χ(g1)
=

=

{
1 if g1 g2,

χ(g2)
0 if g1 6= g2,

and for all χ1, χ2 ∈ G we have

1〈χ1, χ2〉 :=
#G

∑
g∈G

χ1(g)
1

χ2(g) =

{
if χ1 = χ2,

0 if χ1 6= χ2.

Proof. If g1 = g2 then χ(g1)χ(g2) = 1 for all χ ∈ G∧ and 〈g1, g2〉 = #G∧/#G = 1; we
similarly have 〈χ1, χ2〉 = 1 whenever χ1 = χ2.

If g1 6= g2 then there is a χ0 ∈ G∧ for which λ := χ0(g1)χ0(g2) = χ0(g1g
−1
2 ) 6= 1, by

Corollary 17.6. We then have λ〈g1, g2〉 = 〈g1, g2〉, since summing over χ0χ is the same as
summing over χ, and λ 6= 1, so 〈g1, g2〉 = 0.

If χ1 6= χ2 then we can pick g0 ∈ G so that λ := χ1(g0)χ2(g0) = (χ1χ2)(g0) 6= 1, since
χ1χ2 = χ1χ

−1
2 is not the identity, and we then obtain 〈χ1, χ2〉 = 0 as above.

Corollary 17.10. For χ ∈ G∧ we have
∑

g∈G χ(g) 6= 0 if and only χ is the trivial character.

Remark 17.11. The orthogonality of characters given by Proposition 17.9 is a special case
of the orthogonality of characters one encounters in Fourier analysis on compact groups;
the weighted sum over G corresponds to integrating against its Haar measure (the counting
measure µ normalized so that µ(G) = 1).

Proposition 17.12. Let G be a finite abelian group. There is an inclusion reversing bijec-
tion between subgroups H of G and subgroups K of G∧ that sends each order-n subgroup
H of G to the index-n subgroup K of G∧ consisting of the characters of G that restrict to
the trivial character on H. The inverse bijection sends K ⊆ G∧ to the subgroup H of G
consisting of the element of G that are mapped to 1 by every character in K.

Proof. Let H be a subgroup of G, let K = {χ ∈ G∧ : χ(h) = 1 for all h ∈ H}, and let
χ1 := 1G∧ . We have

#H#K =
h

∑
χ(h) = χ(h)

∈H χ

∑
∈K h

∑
∈H χ

∑
∈K

χ1(h) =
∑∑

χ(g)χ1(g) = #G,
g∈G χ∈K
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thus the index of K is equal to the order of H. It is clear that the map H 7→ K is inclusion
reversing, and that the inverse bijection is as stated.

17.3 Dirichlet characters

We now define the notion of a Dirichlet character. Historically, these preceded the notion of
a group character; they were introduced by Dirichlet in 1831, at least twenty years before
the notion of an abstract group had been formalized (indeed, Galois was still alive).

Definition 17.13. A function f : Z → C is called an arithmetic function. We say that f
is multiplicative if f(mn) = f(m)f(n) holds for all relatively prime m,n ∈ Z, and totally
multiplicative (or completely multiplicative) if this holds for all m,n ∈ Z. For m ∈ Z≥1 we
say that f is m-periodic if f(n + m) = f(n) for all n ∈ Z and call m the period of f it is
the least m for which this holds.

Definition 17.14. A Dirichlet character χ is an arithmetic function χ : Z→ C that is both
periodic and totally multiplicative.

The image of a Dirichlet character is a finite subset of C that is closed under multipli-
cation and not equal to {0} and is thus the union of a finite subgroup of the unit circle
U(1) and a subset of {0}. The constant function 1 is the trivial Dirichlet character ; it is
the unique Dirichlet character of period 1. Each m-periodic Dirichlet character χ restricts
to a group character χ on (Z/mZ)×; conversely, every group character χ of (Z/mZ)× can
be extended to a Dirichlet character χ by defining χ(n) = 0 for n 6∈ (Z/mZ)×.

Remark 17.15. Of course when we write n 6∈ (Z/mZ)× for an integer n ∈ Z, we are
referring to the image of n under the quotient map Z→ Z/mZ.

Definition 17.16. A Dirichlet character of modulus m is an m-periodic Dirichlet charac-
ter χ that is the zero-extension of a group character on (Z/mZ)×; equivalently, a character
for which n ∈ (Z/mZ)× ⇔ χ(n) 6= 0.

Remark 17.17. Some authors only define Dirichlet characters of modulus m, thereby
baking m into the definition of a Dirichlet character; we will take a more flexible view.

The Dirichlet characters of modulus m form a group under multiplication that is canon-
ically isomorphic to the character group of (Z/mZ)×. Not every m-periodic Dirichlet char-
acter χ is a Dirichlet character of modulus m, since an m-periodic Dirichlet character need
not vanish on n ∈ (Z/mZ)×, but if m is the modulus of χ then this must be the case. More
generally, we have the following lemma.

Lemma 17.18. Let χ be a Dirichlet character of period m. Then χ is a Dirichlet character
of modulus m′ if and only if m|m′|mk for some k (which holds in particular for m′ = m).

Proof. We first show that χ is a Dirichlet character of modulus m. Suppose for the sake
of contradiction that χ(n) 6= 0 and gcd(m,n) > 1 for some n ∈ Z. Then χ(p) 6= 0 for all
primes p|n, since χ(p)χ(n/p) = χ(n) 6= 0. Fix a prime p| gcd(m,n). For any r ∈ Z we have

χ(r)χ(p) = χ(rp) = χ(rp+m) = χ(r +m/p)χ(p),

and this implies χ(r) = χ(r + m/p), since χ(p) 6= 0. Thus χ is m/p-periodic, but this
contradicts the minimality of m (the period of χ). So we must have χ(n) = 0 whenever
gcd(m,n) > 1, which implies that χ is a Dirichlet character of modulus m.
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If m|m′|mk then the prime divisors of m′ coincide with those of m. It follows that

n ∈ (Z/m′Z)× ⇐⇒ n ∈ (Z/mZ)× ⇐⇒ χ(n) 6= 0,

and χ is clearly m′-periodic (since m|m′), so χ is a Dirichlet character of modulus m′.
Conversely, if χ is a Dirichlet character of modulus m′, then χ is m′-periodic, and

therefore m|m′, since m is the period of χ. And since χ is a Dirichlet character of modulus m
and of modulus m′, for each prime p we have

p 6∈ (Z/mZ)× ⇐⇒ χ(p) = 0⇐⇒ p 6∈ (Z/m′Z)×,

thus the prime divisors of m and m′ coincide and m′ must divide some power mk of m.

17.3.1 Primitive Dirichlet characters

Given a Dirichlet character χ1 of modulus m1 dividing m2, we can always create a Dirichlet
character χ2 of modulus m2 by defining χ2(n) := χ1(n) for n ∈ (Z/m2Z)× and χ2(n) := 0
otherwise. Provided m2 is divisible by a prime p that does not divide m1, the Dirichlet
characters χ1 and χ2 will not be the same (χ2(p) = 0 6= χ1(p), for example), and we
can create infinitely many new Dirichlet characters from χ1 in this way, but they will differ
from χ1 only in a rather trivial sense. We would like to to distinguish the Dirichlet characters
that do and do not arise in this way.

Definition 17.19. Let χ1 and χ2 be Dirichlet characters of modulus m1 and m2, respec-
tively, with m1|m2. If χ2(n) = χ1(n) for n ∈ (Z/m2Z)× then χ2 is induced by χ1.

Lemma 17.20. A Dirichlet character χ2 of modulus m2 is induced by a Dirichlet character
of modulus m1|m2 if and only if χ2 is constant on residue classes in (Z/m2Z)× that are
congruent modulo m1. When this holds, the Dirichlet character χ1 of modulus m1 that
induces χ2 is uniquely determined.

Proof. If χ2 is induced by χ1 then it must be constant on residue classes in (Z/m2Z)×

that are congruent modulo m1, since χ1 is. To prove the converse we first show that the
surjective ring homomorphism Z/m2Z→ Z/m1Z given by reduction modulo m1 induces a
surjective homomorphism (Z/m 5

2Z)× → (Z/m1Z)× of unit groups.
Suppose u1 ∈ Z is a unit modulo m1. Let a be the product of all primes dividing m2/m1

but not u1. Then u2 = u1 + m1a is not divisible by any prime p|m1 (since u1 isn’t), nor
is it divisible by any prime p|(m2/m1): by construction, such a p divides exactly one of u1
and m1a. Thus u2 is a unit modulo m2 that reduces to u1 modulo m1.

The surjectivity of the homomorphism (Z/m2Z)× → (Z/m1Z)× induced by reduction
modulo m1 implies that if χ is constant on residue classes of (Z/m2Z)× that are congruent
modulo m1, then it uniquely determines a group character of (Z/m1Z)× that can be zero-
extended to a Dirichlet character χ1 of modulus m1, and χ1 then induces χ2.

Definition 17.21. A Dirichlet character is primitive if it is not induced by any Dirichlet
character other than itself. A Dirichlet character χ induced by 1 is called principal (and is
primitive only if χ = 1).

5In fact, one can show that every surjective homomorphism of finite rings induces a surjective homomor-
phism of unit groups, but this does not hold in general (consider Z→ Z/5Z, for example).
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For each integer m > 1 we use 1m to denote the principal Dirichlet character of modulus
m; it corresponds to the identity element under the canonical isomorphism between Dirichlet
characters of modulus m and the character group of (Z/mZ)×.

Lemma 17.22. Let χ be a Dirichlet character of modulus m. Then

χ 6
n∈

∑
(n) = 0 ⇐⇒ χ = 1m.

Z/mZ

Proof. We have χ(n) = 0 for n 6∈ (Z/mZ)×, and the sum over (Z/mZ)× is nonzero if and
only if χ restricts to the trivial character on (Z/mZ)×, by Corollary 17.10.

Note that the principal Dirichlet characters 1m and 1m′ necessarily coincide when
m|m′|mk; for example the principal Dirichlet character of modulus 2 (the parity function)
is the same as the principal Dirichlet character of modulus 4 (and every power of 2).

Theorem 17.23. Every Dirichlet character χ is induced by a primitive Dirichlet charac-
ter χ that is uniquely determined by χ.

Proof.

˜
Let us define a partial ordering � on the set of all Dirichlet characters by defining

χ1 � χ2 if χ1 induces χ2. The relation � is clearly reflexive, and it follows from Lemma 17.20
that it is transitive.

Let χ be a Dirichlet character of period m and consider the set X = {χ′ : χ′ � χ}. Each
χ′ ∈ X necessarily has period m′ dividing m and there is at most one χ′ of period m′ for
each divisor m′ of m, by Lemma 17.20. The set X is thus finite, and it is nonempty, since
it contains χ.

Suppose χ1, χ2 ∈ X have periods m1 and m2, respectively. Then m1 and m2 both
divide m, as does m3 = gcd(m1,m2). We have a commutative square of surjective unit
group homomorphisms induced by reduction maps:

(Z/mZ)× (Z/m1Z)×

(Z/m2Z)× (Z/m3Z)×

From Lemma 17.20 we know that χ is constant on residue classes in (Z/mZ)× that are con-
gruent modulo either m1 or m2, and therefore χ is constant on residue classes in (Z/mZ)×

that are congruent modulo m3, as are χ1 and χ2 (which are determined by χ). It follows
that there is a unique Dirichlet character χ3 of modulus m3 that induces χ, χ1, and χ2.

Thus every pair χ1, χ2 ∈ X has a lower bound χ3 under the partial ordering � that is
compatible with the total ordering of X by period. This implies that X contains a unique
element χ̃ that is minimal, both with respect to the partial ordering � and with respect to
the total ordering by period; it must be primitive, by the transitivity of �.

Definition 17.24. The conductor of a Dirichlet character χ is the period of the unique
primitive Dirichlet character χ

Corollary

˜ that induces χ.

17.25. For each integer m ≥ 1, there is a canonical bijection between the set
of Dirichlet characters of modulus m and the set of primitive Dirichlet characters whose
conductor divides m. Both sets may be identified with the character group of (Z/mZ)×.
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Proof. By Theorem 17.23, we have a canonical injective map χ→ χ from the set of Dirich-
let characters χ of modulus m to the set of primitive Dirichlet characters whose conductor
divides m. This map is also surjective, since each primitive Diric

˜
hlet character χ of con-

ductor dividing m can be used to define a Dirichlet character χ of modulus m induced by χ
by defining χ(n) := χ̃(n) for n ∈ (Z/mZ)× and χ(n) := 0 otherwise.

˜
As already noted, there is a canonical bijection between the group of Dirichlet characters

˜
of modulus m and the character group of (Z/mZ)×: each Dirichlet character of modulus m
can be composed with reduction modulo m to obtain a character of (Z/mZ)×, and each
character of (Z/mZ)× can be zero-extended to a Dirichlet character of modulus m.

Corollary 17.26. For a Dirichlet character χ of modulus m we have n∈Z/m χ(n)Z 6= 0
if and only if χ has conductor 1.

∑
Proof. This follows from Lemma 17.22; the principal character 1m is the unique character
of modulus m of conductor 1.

Example 17.27. 12-periodic Dirichlet characters, ordered by period m and conductor c.

m c 0 1 2 3 4 5 6 7 8 9 10 11 mod-12 principal primitive
1 1 1 1 1 1 1 1 1 1 1 1 1 1 no yes yes
2 1 0 1 0 1 0 1 0 1 0 1 0 1 no yes no
3 1 0 1 1 0 1 1 0 1 1 0 1 1 no yes no
3 3 0 1 -1 0 1 -1 0 1 -1 0 1 -1 no no yes
4 4 0 1 0 -1 0 1 0 -1 0 1 0 -1 no no yes
6 1 0 1 0 0 0 1 0 1 0 0 0 1 yes yes no
6 3 0 1 0 0 0 -1 0 1 0 0 0 -1 yes no no

12 4 0 1 0 0 0 1 0 -1 0 0 0 -1 yes no no
12 12 0 1 0 0 0 -1 0 -1 0 0 0 1 yes no yes

17.4 Dirichlet L-functions

Definition 17.28. The Dirichlet L-function associated to a Dirichlet character χ is

L(s, χ) :=
∏ 1

p

=
1− χ(p)p−s

n

∑
χ(n)n−s,

≥1

which converges for Re s > 1.

For the trivial Dirichlet character 1 have L(s,1) = ζ(s). For the principal character 1m
of modulus m induced by 1 we have

1
ζ(s) = L(s,1m)

p

∏
|m

.
1− p−s

The product on the right is finite, hence it is bounded and nonzero as s → 1+, so the
L-function L(s,1m) has a simple pole at s = 1 of residue

)
ress=1 L(s, 1 φ(m

1m) =
∏

(1− p− ) =

p|m

.
m

But the L-functions of non-principal Dirichlet characters do not have a pole at s = 1.
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Proposition 17.29. Let χ be a non-principal Dirichlet character of modulus m. Then
L(s, χ) extends to a holomorphic function on Re s > 0.

Proof. Let χ be a non-principal Dirichlet character of modulus m. Define the function
T : R≥0 → C by

T (x) :=
∑

χ(n).
0<n≤x

For any x ∈ R≥0 Lemma 17.26 implies

T (x+m)− T (x) =
x<n

∑
χ(n) =

≤x+m n∈

∑
χ(n) = 0,

Z/mZ

since χ is non-principal. Thus T (x) is periodic modulo m and is therefore bounded.
Writing L(s, χ) as a Stieltjes integral and integrating by parts yields

L(s, χ) =
∑

χ(n)n−s

n≥1

=

∫ ∞
x−sdT (x)

0

s
∞ ∫∣∣∣ ∞

= x− T (x) ∣ − T (x)d(x−s)∫ 0 0
∞

= 0− T (x)(−sx−s−1)dx

= s

∫ 0
∞
T (x)x−s−1dx.

0

As a function of s, the RHS extends to a holomorphic function on Re s > 0, since it is the
n

limit of the uniformly converging sequence of functions φn(s) := s
∫

T (x)x s
0

− −1dx (here we
use the fact that T (x) is bounded).

Remark 17.30. In fact, L(s, χ) extends to a holomorphic function on C whenever χ is
non-principal.

17.5 Stieltjes integrals

For the benefit of those who have not seen them before, we recall a few facts about Stieltjes
integrals (also called Riemann-Stieltjes integrals), taken from [1, Ch. 7]. These generalize
the Riemann integral but are less general than the Lebesgue integral; they provide a handy
way for converting sums to integrals that is often used in analytic number theory.

Definition 17.31. Let f and g be (real or complex valued) functions defined on a nonempty
real interval [a, b]. For any partition P = (x0, . . . , xn) of [a, b] and sequence T = (t1, . . . , tk)
with tk ∈ [xk−1, xk], we define the Riemann-Stieltjes sum

n

S(P, T, f, g) :=
∑

f(tk)(g(xk)− g(xk−1))
k=1

We say that f is Riemann-Stieltjes integrable with respect to g and write f ∈ S(g) if there
is a (real or complex) number S such that for every ε > 0 there is a partition Pε of [a, b]
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such that for every refinement P = (x0, . . . , xn) of Pε and every sequence T = (t1, . . . , tn)
with tk ∈ [xk 1, xk] we have |S(P, T, f, g)− S| < ε.6−

b
When such an S exists it is necessarily unique and we denote it by f dg, the Riemann-a

Stieltjes integral of f with respect to g. Improper Riemann-Stieltjes integrals are then defined
as limits

∫
∫ ∞

f dg := lim
ba →∞

∫ b

f dg∫ aa − b a
(and similarly for the lower limit), and we define f dg = f dg and f dg = 0.b a a

The case g(x) = x is the usual Riemann integral. The Riemann-Stieltjes

∫ ∫
integral satisfies

the usual properties of linearity, summability, and integration by parts.

Proposition 17.32. Let f, g, and h be functions on [a, b] and let c1 and c2 be constants.
The following hold:

• If f, g ∈ b
S

∫ b b
(h) then (c1f + c2g) dh = c1 f dh+ c2 g dh.a ∫ a a

• If f ∈ b b b
S(g), S(h) then f d(c1g + c2h) =

∫
ci f dg + c2a a

∫
f dh.a

• c b
If f ∈ b

S(g) then for any c ∈ [a, b] we have a

∫
f dg = fa

∫
dg + f dg.c

• b b
If f ∈ S(g) then g ∈ S(f) and

∫
f dg +

∫
g df = f(b)g(b) f(a)g(a).a a

∫ ∫
−

∫
• If f = f1 + if2 and g = g1 + ig2 with f1, f2 ∈ S(g1), S(g2) then∫ b

f dg =

(∫ b b

f1 dg1 −
∫ b b

f2 dg2 +
a

)
i

a

(∫
f2 dg1 +

a a

∫
f1 dg2

a

)
.

Proof. See [1, Thm. 7.2-7,7.50].

The last identity allows us to reduce complex-valued integrals to real-valued integrals.
The following proposition allows us to reduce Stieltjes integrals to Riemann integrals.

Proposition 17.33. Let f and g be real-valued functions on [a, b] and suppose g has a
continuous derivative g′ on [a, b]. Then∫ b b

f dg = f(x)g′(x)dx.
a

∫
a

Proof. See [1, Thm. 7.8].

b
A key advantage of the Stieltjes integral

∫
f dg is that neither the integrand f nora

the integrator g is required to be continuous. It suffices for f and g to be of bounded
variation and not share any discontinuities (and they can even share certain discontinuities,
see Theorem 17.35).

Definition 17.34. Let f be a (real or complex valued) function defined on a nonempty real
interval [a, b]. Then f is of bounded variation if there exists a (real or complex) number M
such that

n∑−1
|f(xi+1)− f(xi)| < M

i=0

6This definition (due to Pollard) is more general than that originally given by Stieltjes but is now standard.
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for every partition P = (x0, . . . , xn) of [a, b]. If f has a continuous derivative f ′ on [a, b]
b

this is equivalent to requiring ofa |f
′(x)|dx < ∞. Every piecewise monotone function is

bounded variation. In particular,

∫
any step function with finitely many discontinuities on

[a, b] is of bounded variation.

Theorem 17.35. Let f and g be functions on [a, b] of bounded variation such that for every
c ∈ [a, b] the function f is∫ continuous from the left at c and the function g is continuous

b b
from the right at c. Then f dg anda

∫
g df both exist.a

Proof. See [2, Thm. 3.7].

Corollary 17.36. Let f and g be functions on [a, b] such that f and g are not both discon-
tinuous from the left or from the right at integers n ∈ [a, b], and let G(x) =

∑
a<n≤x g(n).

Then ∑
f(n)g(n) =

∫ b

f(x) dG(x).
aa<n≤b

In particular, the integral on the RHS always exists.

Proof. See [1, Thm. 7.11].

As an example of using Stieltjes integrals, let us derive an asymptotic estimate for the
the harmonic sum

H(x) :=
1≤

∑ 1

n≤x
.

n

Theorem 17.37. For x ∈ R≥1, as x→∞ we have

H(x) = log x+ γ +O
(
1
x

where γ = limx (H(x)− log x) = 0.577216 . . . is Euler’s→∞

)
constant.

Proof. Let [t∑] denote the greatest integer function. Applying Corollary 17.36 with g(t) = 1
and G(t) = 1 n x 1 = [t], we have≤ ≤

1
H(x) =

1≤

∑
n≤x

n
=

∫ x

1−

1

t
d[t]

=
[t] x

t

∣∣∣∣
1−
−
∫ x 1

[t] d
1− t

=
[x] x

+
x

∫
[t]

1− t
2
dt

=
[x]

x
+

∫ x

1−

1

t
dt−

∫ x

1−

t− [t]

t2
dt

=
[x] x

+ log x
x

−
∫

t− [t]

1−
dt,

t2

where we used integration by parts in the second line and applied Proposition 17.33 to get
the third line. Now let γ = 1−

∫∞
(t1− − [t])/t2 dt. Then

[x]
H(x) =

x
+ log x− 1 + γ +

∫ ∞
x

t− [t]
dt

t2

= log x+ γ +

(
[x]− x
x

+

∫ ∞
x

t− [t]
dt

t2

)
.
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Both summands in the parenthesized quantity on the RHS are clearly O( 1 ); thusx

γ = lim (H(x)
x→∞

− log x) ,

and the theorem follows.

Remark 17.38. One can further refine this estimate by further analyzing the (exact) error
term on the RHS of the expression for H(x). For example, one finds that

1
H(x) = log x+ γ +

2x
− 1 1

+
2x2 120x4

+O

(
1

.
x6

)
17.6 Primes in arithmetic progressions

We now return to our goal of proving Dirichlet’s theorem on primes in arithmetic progres-
sions. Let a and m be positive integers with a ⊥ m. We want to show that the sum∑

p−s

p≡ a mod m

is unbounded as s→ 1+. To convert this to a sum over all primes we use Proposition 17.9
to construct the indicator function

1 if

φ

∑ 1
χ(p/a) =

(m)
χ

{
p ≡ a mod m,

0 otherwise

where p/a is computed modulom and χ ranges over primitive Dirichlet characters of conduc-
tor dividing m (which we identify with the character group of (Z/mZ)× via Corollary 17.25).

As s→ 1+ we then have

p≡ a

∑ 1
p−s = p−s

mod m

∑
p

φ(m)

∑
χ

χ(p/a)

=
∑
χ

χ(1/a)
χ

φ(m)

∑
(p)p−s

p

=
∑ χ(1/a)

χ
φ(m)

(
logL(s, χ) +O(1)

)
=

log ζ(s) χ
+

φ(m)
χ

∑ (1/a)

6=1
logL(s, χ) +O(1).

φ(m)

We now make the key claim that so long as χ is not principal, we have

L(1, χ) 6= 0.

This implies that logL(1, χ) = O(1) as s→ 1+ and therefore

p≡ a

∑ )
p−s

log ζ(s
=

mod m

+O(1)
φ(m)
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is unbounded as s→ 1+, since ζ(s) is. Moreover, applying Mertens’ second theorem to the
estimate (1) for log ζ(s) that we derived earlier, we obtain

p

∑ 1

p
≤x

≡ a mod m

p
∼ 1

log log x
φ(m)

In order to prove the key claim that L(1, χ) 6= 0 when χ is non-principal, we will prove
next time that the Dedekind zeta function ζK(s) of the mth cyclotomic field K = Q(ζm)
can be written as

ζK(s) =
∏

L(s, χ),
χ

where the product ranges over the primitive Dirichlet characters of conductor dividing m.
Exactly one of these is principal, namely, L(s,1) = ζ(s), and it has a simple pole at s = 1.
The analytic class formula we will prove in the next lecture implies that ζK(s) extends to
a meromorphic function on Re(s) > 1− 1 with a simple pole at s = 1; this implies thatφ(m)

L(1, χ) 6= 0 for all non-principal Dirichlet characters.
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