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19 The Kronecker-Weber theorem

As you proved in Problem Set 4, for each integer m > 1 the cyclotomic extension Q(ζm)/Q
is an abelian extension with Galois group G := Gal(Q(ζm)/Q) ' (Z/mZ)×. If K is a
subfield of Q(ζm), then the subgroup H of G fixing K is necessarily normal (since G is
abelian), thus K/Q is Galois, with Gal(K/Q) ' G/H, which we note is also abelian. We
thus have a simple recipe for constructing finite abelian extensions of Q: pick m ≥ 1 and
take any subfield of Q(ζm).

Remarkably, every finite abelian extension of Q can be constructed in this way. This is
the Kronecker-Weber Theorem, which was first stated by Kronecker [2] in 1853. Kronecker
proved it for extensions of odd degree and Weber published a proof 1886 [5] that was believed
to address the remaining cases; in fact Weber’s proof contains some gaps (as noted in [3]),
but in any case an alternative proof was given a few years later by Hilbert [1].

The proof of the Kronecker-Weber theorem we present here is adapted from [4, Ch. 14]

19.1 Local and global Kronecker-Weber theorems

We now state the (global) Kronecker-Weber theorem.

Theorem 19.1. Every finite abelian extension of Q lies in a cyclotomic field Q(ζm).

There is also a local version.

Theorem 19.2. Every finite abelian extension of Qp lies in a cyclotomic field Qp(ζm).

In fact, the local and global versions are equivalent.

Proposition 19.3. The global Kronecker-Weber theorem holds if and only if the local
Kronecker-Weber theorem holds.

ˆProof. If K/Qp is a finite abelian extension of local fields, then, by Corollary 11.3, there is
ˆa corresponding Galois extension K/Q of global fields such that K is the completion of K

with respect to a p-adic absolute value extending the p-adic absolute value on Q. The Galois
group Gal(K/Q) ' ˆGal(K/Qp) is abelian, so the global Kronecker-Weber theorem implies
that K ⊆ Q ˆ(ζm) for some integer m > 1. Let L be the completion of Q(ζm) at prime q|p.

ˆThen L contains Qp(ζm), and since Qp(ζm) is a complete field containing Q(ζm) the two
ˆ ˆfields must be equal. Thus K ⊆ L ⊆ Qp(ζm), so the local Kronecker-Weber theorem holds.

Now let K/Q be a finite abelian extension of global fields. For each ramified prime p
of Q, pick a prime p|p and let Kp be the completion of K at p. The extension Kp/Qp is
finite abelian (its Galois group is isomorphic to a subgroup of Gal(K/Q), by part (6) of
Theorem 11.4), and the local Kronecker-Weber theorem∏ implies Kp ⊆ Qp(ζmp) for some
integer m ≥ 1. Now let e = v (m ) and define m := pepp p p p p (this is a finite product, since
it ranges over ramified primes).

Claim: K(ζm) = Q(ζm) (and in particular, K ⊆ Q(ζm)).
Proof of claim: Let L = K(ζm). Then L is Galois (it is the splitting field over K of

the cyclotomic polynomial Φm(x)), and it is abelian since its Galois group is isomorphic to
a subgroup of Gal(K/Q)×Gal(Q(ζm)/Q) (because L = K ·Q(ζm)). Let q be a prime of L
lying above one of our chosen p|p; then q|p and the completion Lq of L at q is a finite abelian
extension of Qp. Let F be the maximal unramified extension of Qp in Lq. Then Lq/F is
totally ramified, so its Galois group is isomorphic to the inertia group Ip := Iq. The field F
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contains roots of unity ζn for all n|m not divisible by p (because the extensions Qp(ζn) are
all unramified and F is maximal), so Lq = F (ζm) = F (ζpep ). Note that F ∩Q(ζpep ) = Qp,
since the extension Qp(ζpep )/Qp must be ramified if its nontrivial, and therefore

Ip ' Gal(L/F ) ' Gal(Qp(ζpep )) ' (Z/pepZ)×.

Now let I be the subgroup of Gal(L/Q) generated by the inertia groups Ip for p|m. Then

#I ≤
∏

#Ip =
∏

φ(pep) = φ(m) = [Q(ζm) : Q].
p p

The fixed field of I is an unramified extension of Q, hence trivial (by Corollary 13.23).
Therefore I = Gal(L/Q) and

[L : Q] = #I ≤ [Q(ζm) : Q],

so K(ζm) = L = Q(ζm) and the global Kronecker-Weber theorem holds for K ⊆ Q(ζm).

To prove the local Kronecker-Weber theorem we first reduce to the case of cyclic exten-
sions of prime-power degree. Recall that if L1 and L2 are two Galois extensions of a field K
then compositum L = L1L2 is Galois over K and

Gal(L/K) ' {(σ1, σ2) : σ1|L1∩L2 = σ2|L1 L2} ⊆ Gal(L1/K)×Gal(L2/K).∩

Note that the inclusion on the RHS is an equality if and only if L1 ∩L2 = K. If L/K is an
abelian extension with Gal(L/K) ' H1 × H2 then by defining L2 := LH1 and L1 := LH2

we may write L = L1L2 with L1 ∩ L2 = K, and we then have Gal(L1/K) ' H1 and
Gal(L2/K) ' H2. It then follows from the structure theorem for finite abelian groups that
we may decompose any finite abelian extension L/K into a compositum L = L1 · · ·Ln of
(linearly disjoint) cyclic extensions Li/K of prime-power degree. If each Li lies in K(ζmi)
for some integer mi ≥ 1, then if we put m := m1 · · ·mn we have L ⊆ Q(ζm).

To prove the local Kronecker-Weber theorem it suffices to consider cyclic `-extensions
K/Qp (cyclic extensions whose degree is a power of a prime `). There two distinct cases:
` = p and ` 6= p. We consider the easier case ` 6= p first.

19.2 The Kronecker-Weber theorem for cyclic `-extensions of Qpwith ` 6=
p

Proposition 19.4. Let K/Qp be a cyclic extension of degree `r for some prime ` 6= p.
Then K ⊆ Qp(ζm) for some m ∈ Z≥1.

Proof. Let F be the maximal unramified extension of Qp in K; then F is cyclotomic, by
Corollary 10.5, so let F = Qp(ζn). The extension K/F is totally ramified, and it must be
tamely ramified, since the ramification index is necessarily a power of ` and therefore not
divisible by p. By Theorem 10.23, we have K = F (π1/e) for some uniformizer π of the
discrete valuation ring OF , with e = [K : F ]. We may assume that π = −pu for some
u ∈ OF

×, since F/Qp is unramified: if q|p is the maximal ideal of OF then the valuation
vq extends vp with index eq = 1 (by Theorem 5.11), so vq(−pu) = vp(

1/e
−pu) = 1. The field

K = F (π ) then lies in the compositum of F ((−p)1/e) and F (u1/e), and we will show that
both of these fields lie in a cyclotomic extension of Qp.
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The extension F (u1/e)/F is unramified, since p 6 | e and u is a unit (the discriminant of
xe − u is not divisible by p), thus F (u1/e)/Qp is unramified and therefore cyclotomic, by
Corollary 10.5, so let F (u1/e) = Qp(ζk) for some integer k ≥ 1. The field K(u1/e) = K ·
Qp(ζ

1/e
k) is a compositum of abelian extensions, so K(u )/Qp is abelian, and it contains the

subextension Qp((−p)1/e)/Qp, which must be Galois (since it lies in an abelian extension)
and totally ramified (by Theorem 10.18, since it is an Eisenstein extension). The field
Qp((−p)1/e) contains ζe (take ratios of roots of xe + p) and is totally ramified (since it
is Eisenstein), but Qp(ζe)/Qp is unramified (since p 6 | e), so we must have Qp(ζe) = Qp.
Therefore e|(p− 1), and by Lemma 19.5 below we have

Q ((−p)1/e) ⊆ Q ((−p)1/(p 1)
p p

− ) = Qp(ζp),

It follows that F ((−p)1/e) = F · Qp((−p)1/e) ⊆ Qp(ζn) · Qp(ζp). If we now put m = npk,
the cyclotomic field Qp(ζm) contains both F (u1/e) and F ((−p)1/e), and therefore K.

Lemma 19.5. For any prime p we have Qp (−p)1/(p−1) = Qp(ζp).

Proof. Let α = ( p)1/(p−1). Then α is a root

(
of

)
− the Eisenstein polynomial xp−1 + p, so the

extension Qp((−p)1/(p−1)) = Qp(α) is totally ramified of degree p−1, and α is a uniformizer
(by Proposition 10.17 and Theorem 10.18). Let π = ζp−1. The minimal polynomial of π is

(x+ 1)p 1
f(x) :=

−
= xp−1 + pxp−2 + · · ·+ p,

x

which is Eisenstein, so Qp(π) = Qp(ζp) is also totally ramified of degree p − 1, and π is a
uniformizer. We have u := −πp−1/p ≡ 1 mod π, so u is a unit in the ring of integers of
Q (ζ ). If we now put g(x) = xp 1
p p

− − u then g(1) ≡ 0 mod π and g′(1) = p− 1 6≡ 0 mod π,
so by Hensel’s Lemma 9.13 we can lift 1 to a root β of g(x) in Qp(ζp).

We then have pβp−1 = pu = −πp−1, so (π/β)p−1 + p = 0, and therefore π/β ∈ Qp(ζp) is
a root of the minimal polynomial of α. Since Qp(ζp) is Galois, this implies that α ∈ Qp(ζp),
and since Qp(α) and Qp(ζp) both have degree p− 1, the two fields must be equal.

To complete the proof of the local Kronecker-Weber theorem, we need to address the
case ` = p, that is, we need to show that every cyclic p-extension of Qp lies in a cyclotomic
field. Here we need to deal with wild ramification, which complicates matters. We first
recall a bit of the theory of Kummer extensions.

19.3 A little Kummer theory

Let K be a field, let n ≥ 1 be prime to the characteristic of K, and assume K contains a
primitive nth root of unity ζ

√
n

n. If L/K is an extension of the form L = K( a), then L is
the splitting field of f(x) = xn− a over K (the roots ζinα of f(x) all lie in L), hence Galois;
here

√
n a denotes a root of xn − a, but since L contains all of them, it makes no difference

which one we pick. The extension L/K is cyclic, since we have an injective homomorphism

Gal(L/K) ↪→ 〈ζn〉 ' Z/nZ
σ(
√
n

σ 7→ a)
n
√ ,
a

which is an isomorphism whenever xn − a is irreducible.
Kummer’s key observation is that the converse holds.
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Lemma 19.6. Let K be a field, let n ≥ 1 be prime to the characteristic of K, and assume
ζn ∈ K. If L/K is a cyclic extension of degree n then L = K(

√
n a) for some a ∈ K.

Proof. Let L/K be a cyclic extension of degree n with Gal(L/K) = 〈σ〉. Applying Hilbert’s
Theorem 90 (Lemma 19.7 below) to ζn with N n

L/K(ζn) = ζn = 1, we obtain an element
α ∈ L for which σ(α) = ζnα. We have

σ(αn) = σ(α)n = (ζnα)n = αn,

thus a = αn is invariant under the action of 〈σ〉 = Gal(L/K) and therefore lies in K.
Moreover, the orbit {α, ζnα, . . . , ζn−1n α} of α under the action of Gal(L/K) has order n, so
L = K(α) = K(

√
n a) as desired.

Lemma 19.7 (Hilbert Theorem 90). Let L/K be a cyclic extension with Galois group 〈σ〉.
For every u ∈ L of norm NL/K(u) = 1 there exists z ∈ L× for which σ(z) = uz.

Proof. By the normal basis theorem, we can pick b ∈ L so that {σi(b)} is a basis for
L ' Kn as a K-vector space. If we represent elements of L in this basis, σ acts as a
cyclic permutation (x1, . . . , xn) 7→ (xn, x1, . . . , xn 1). The map f(x) = σ(ux) is a K-linear−
transformation of L, and we claim that 1 is an eigenvalue of f , a property that is invariant
under base change. If we base-change to L, our n-dimensional K-vector space L ' Kn

becomes an n-dimensional L-vector space L⊗ n
K L ' L , and the nonzero vector

(1, σ(u), σ(u)σ2(u), . . . , σ(u)σ2(u)σ3(u) · · ·σn−1(u)) ∈ Ln

is fixed by f (because σ(u)σ2(u) · · ·σn−1(u) = N 1
L/K(u)u− = u−1). Thus 1 is an eigenvalue

of f , so there is a nonzero z ∈ L ' Kn that is fixed by f .

Definition 19.8. Let K be a field with algebraic closure K, let n ≥ 1 be prime to the
characteristic of K, and assume ζn ∈ K. The Kummer pairing is the map

〈·, ·〉 : Gal(K/K)×K× → 〈ζn〉
〈σ, a〉 7→ σ(α)/α

where α is any nth root of a in ∈ K×; if β is another nth root of a, then α/β ∈ K is fixed by
σ (since K contains all nth roots of 1) and σ(β)/β = σ(β)/β · σ(α/β)/(α/β) = σ(α)/α, so
the value of 〈σ, a〉 does not depend on the choice of α. Note that if a ∈ K×n then 〈σ, a〉 = 1
for all σ ∈ Gal(K,K), so the Kummer pairing depends only on the image of a in K×/K×n;
thus we may also view it as a pairing on Gal(K,K)×K×/K×n.

Theorem 19.9. Let K be a field, let n ≥ 1 be prime to the characteristic of K with ζn ∈ K.
The Kummer pairing induces an isomorphism

Φ: K×/K×n → Hom
(
Gal(K/K), 〈ζn〉

a 7→ σ 7→ 〈σ, a〉 .

)

Proof. For each a

( )
∈ K× − K×n, if we pick an nth root α ∈ K of a then the extension

K(α)/K will be non-trivial and some σ ∈ Gal(K/K) must act nontrivially on α. For this
σ we have 〈σ, a〉 6= 1, so the homomorphism Φ(a) is nontrivial and a 6∈ ker Φ. This shows
that Φ is injective.
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To show surjectivity, let f : Gal(K/K)→ 〈ζn〉 be a homomorphism, let d = # im f , let

H = ker f , and let L = K
H

. Then Gal(L/K) ' Gal(K/K)/H ' Z/dZ, so L/K is a cyclic
extension of degree d, and Lemma 19.6 implies that L = K(

√
d a) for some a ∈ K. If we put

e = n/d and consider the homomorphisms Φ(ame) for m ∈ (Z/dZ)×, these homomorphisms
are all distinct (because the ame are distinct modulo K×n and Φ is injective) and they all
have the same kernel and image as f (their kernels have the same fixed field L because L
contains all the dth roots of a). There are #(Z/dZ)× = #Aut(Z/dZ) distinct isomorphisms
Gal(K/K)/H ' Z/dZ, one of which corresponds to f , and each corresponds to one of the
Φ(ame). It follows that f = Φ(ame) for some m ∈ (Z/dZ)×, so Φ is surjective.

If we now consider any finite subgroup A of K×/K×n, we can choose a1, . . . , ar ∈ K×
so that the images āi of the ai in K×/K×n form a basis for the abelian group A; this means

A = 〈ā1〉 × · · · × 〈ār〉 ' Z/n1Z× · · · × Z/nrZ,

where ni|n is the order of ai in A. For each a , the fixed field of the kernel of Φ(a ) is a
cyclic extension of K isomorphic to Li := K( n

√i i

i ai), as in the proof of Theorem 19.9. The
fields Li are linearly disjoint over K (because the ai correspond to independent generators
of A), and their compositum L = K( n

√
1 a1, . . . nr

√
ar) has Galois group Gal(L/K) ' A, an

abelian group whose exponent divides n; such fields L are called n-Kummer extensions of
K (assuming ζn ∈ K).

Conversely, given an n-Kummer extension L/K, we can iteratively apply Lemma 19.6
to put L in the form L = K( n

√
1 a1, . . . , nr

√
ar) with each ai K× and ni n, and the images

of the a in K×/K×n
∈ |

i generate a subgroup A corresponding to L. We thus have a 1-to-1
correspondence between finite subgroups of K×/K×n and (finite) n-Kummer extensions
of K (this correspondence also extends to infinite subgroups provided we put a suitable
topology on the groups).

So far we have been assuming that K contains all the nth roots of unity. To help handle
situations where this is not necessarily the case, we rely on the following lemma, in which
we restrict to the case that n is a prime (or an odd prime power) so that (Z/nZ)× is cyclic
(the definition of ω in the statement of the lemma does not make sense otherwise).

Lemma 19.10. Let n be a prime (or an odd prime power), let F be a field of characteristic
prime to n, let K = F (ζn), and let L = K(

√
n a) for some a ∈ K×. Define the homomorphism

ω(σ)
ω : Gal(K/F ) → (Z/nZ)× by ζn = σ(ζn). If L/F is abelian then σ(a)/aω(σ) ∈ K×n for
all σ ∈ Gal(K/F ).

Proof. Let G = Gal(L/F ), let H = Gal(L/K) ⊆ G, and let A be the subgroup of K×/K×n

generated by a. The Kummer pairing induces a bilinear pairing H × A → 〈ζn〉 that is
compatible with the action of Gal(K/F ) ' G/H. In particular, we have

〈h, aω(σ)〉 = 〈h, a〉ω(σ) = σ(〈h, a〉) = 〈σ(h), σ(a)〉 = 〈h, σ(a)〉

for all σ ∈ Gal(K/F ) and h ∈ H; the Galois action on H is by conjugation (lift σ to G
and conjugate there), but it is trivial because G is abelian. The pairing is nondegenerate
(because Φ is injective), so we must have aω(σ) ≡ σ(a) mod K×n; the lemma follows.

19.4 The Kronecker-Weber theorem for cyclic p-extensions of Qp, for p > 2

We are now ready to prove the local Kronecker-Weber theorem in the case ` = p. We first
consider the case p 6= 2.
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Theorem 19.11. Let p 6= 2 be prime and let K/Qp be a cyclic extension of degree pr. Then
K ⊆ Qp(ζm) for some m ≥ 1.

Proof. There are two obvious candidates for K, namely, the cyclotomic field Qp(ζ rpp −1),
which by Corollary 10.5 is an unramified extension of degree pr, and the index p−1 subfield
of the cyclotomic field Qp(ζpr+1), which is a totally ramified extension of degree pr (the pr+1-
cyclotomic polynomial has degree pr(p − 1) and is irreducible over Qp). If K is contained

r
in the compositum of these two fields then K ⊆ Qp(ζ

p
m), where m := (p − 1)(pr+1) and

the theorem holds. Otherwise, the field K(ζm) is a Galois extension of Qp with

Gal(K(ζm)/Qp) ' Z/prZ× Z/prZ× Z/(p− 1)Z× Z/psZ,

for some s > 0; the first factor comes from the Galois group of Qp(ζ rpp −1), the second
two factors come from the Galois group of Qp(ζpr+1) (note that Qp(ζpr+1) ∩ Qp(ζ rpp −1) =
Qp), and the last factor comes from the fact that we are assuming K 6⊆ Qp(ζm), so
Gal(K(ζm)/Qp(ζm)) is nontrivial and must have order ps for some 0 < s ≤ r.

It follows that the abelian group Gal(K(ζm)/Qp) has a quotient isomorphic to (Z/pZ)3,
and the subfield of K(ζm) corresponding to this quotient is an abelian extension of Qp with
Galois group isomorphic (Z/pZ)3. But by Lemma 19.12 below, no such field exists.

Lemma 19.12. For p > 2 no extension of Qp has Galois group isomorphic to (Z/pZ)3.

Proof. Suppose for the sake of contradiction that K is an extension of Qp with Galois group
Gal(K/Qp) ' (Z/pZ)3. Then K/Qp is linearly disjoint from Qp(ζp)/Qp, since the order of
G := Gal(Qp(ζp)/Qp) ' (Z/pZ)× is not divisible by p, and Gal(K(ζp)/Qp(ζp)) ' (Z/pZ)3

is a p-Kummer extension. There is thus a subgroup A Q p
p(ζp)

×/Qp(ζp)
× isomorphic to

(Z/pZ)3, for which K(ζ ) = Q (ζ , A1/p), where A1/p
⊆

p p p := {a1/p : a ∈ A} (here we identify
elements of A by representatives in Qp(ζp)

× that are determined only up to pth powers).
For any a ∈ A, the extension Qp(ζp,

√
p a)/Qp is abelian, so by Lemma 19.10, we have

σ(a)/aω(σ) ∈ Qp(ζp)
×p (1)

∈ −∼→ Z Z × ω(σ)
for all σ G, where ω : G ( /p ) is the isomorphism defined by σ(ζp) = ζp .

We may take π = ζp− 1 as a uniformizer for Qp(ζp), which we note is a totally ramified
extension of Qp of degree p− 1 with residue field Z/pZ (see the proof of Lemma 19.5; note
that a totally ramified extension must have residue field degree 1). For each a ∈ A we have

vπ(a) = vπ(σ(a)) ≡ ω(σ)vπ(a) mod p,

thus (1 − ω(σ))vπ(a) ≡ 0 mod p, for all σ ∈ G, hence for all ω(σ) ∈ ω(G) = (Z/pZ)×;
since p > 2, this implies vπ(a) ≡ 0 mod p. Now a is determined only up to pth-powers, so
after multiplying by π−vπ(a) we may assume vπ(a) = 0, and after multiplying by a suitable

ppower of ζp 1 = ζp 1, we may assume a ≡ 1 mod π, since the image of ζ− − p−1 generates the
multiplicative group (Z/pZ)× of the residue field.

pWe may thus assume that A ⊆ U1/U1 , where U1 := {u ≡ 1 mod π}. Each u ∈ U1 can be
written as a power series in π with integer coefficients in [0, p−1] and constant coefficient 1.

We have ζp ∈ U1, since ζp = 1 + π, and ζbp = 1 + bπ +O(π2) for b ∈ [0, p− 1].1 Thus for
any a ∈ A ⊆ U1, we can choose b so that for some c ∈ Z and e ∈ Z≥2 we have

a = ζbp(1 + cπe +O(πe+1)).

1The expression O(πn) denotes a power series in π that is divisible by πn.
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For σ ∈ G we have

σ(π)

π
=
σ(ζp − 1)

ζp − 1
=
ζ
ω(σ)
p − 1

= ζω(σ)−1 + + ζp + 1 ω(σ) mod π,
ζ p
p − 1

· · · ≡

since each term in the sum is congruent to 1 modulo π = (ζp− 1); here we are representing
ω(σ) ∈ (Z/pZ)× as an integer in [1, p− 1]. Thus σ(π) ≡ ω(σ)π mod π and

σ(a) = ζbω(σ)p (1 + cω(σ)eπe +O(πe+1)).

We also have
aω(σ) = ζbω(σ)p (1 + cω(σ)πe +O(πe+1)).

As we proved for a above, any u ∈ U1 can be written as u = ζbpu1 with u1 ≡ 1 mod π2.
pEach interior term in the binomial expansion of u1 = (1 + O(π2))p other than leading 1 is

a multiple of pπ2 pand therefore O(πp+1); if follows that up = u1 ≡ 1 mod πp+1. Thus every
pelement of U1 is congruent to 1 modulo πp+1, and as you will show on the problem set, the

pconverse holds, that is U1 = {u ≡ 1 mod πp+1}.
pWe know from (1) that σ(a)/aω(σ) ∈ U1 , so σ(a) = aω(σ)(1 +O(πp+1)) and therefore

σ(a) ≡ aω(σ) mod πp+1.

For e ≤ p this is possible only if ω(σ) = ω(σ)e for every σ ∈ G, equivalently, for every
ω(σ) ∈ σ(G) = (Z/pZ)×, but then e ≡ 1 mod (p− 1) and we must have e ≥ p, since e ≥ 2.

We have shown that every a ∈ A is represented by an element ζbp(1+cπp+O(πp+1)) ∈ U1

with b, c ∈ Z p, and therefore lies in the subgroup of U1/U1 generated by ζp and (1 + πp),
which is an abelian group of exponent p generated by 2 elements, hence isomorphic to a
subgroup of (Z/pZ)2. But this contradicts A ' (Z/pZ)3.

For p = 2 there is an extension of Q2 with Galois group isomorphic to (Z/2Z)3, the
cyclotomic field Q2(ζ24) = Q2(ζ3) ·Q2(ζ8). More generally, the unramified cyclotomic field
Q2(ζ r22 1) has Galois group Z/2rZ, the totally ramified cyclotomic field Q− 2(ζ2r+2) has Galois
group isomorphic to Z/2Z×Z/2rZ, and their compositum L has Galois group isomorphic to
Z/2Z× (Z/2rZ)2. If K/Q2 is a cyclic extension of degree 2r that does not lie in L, then one
can show that Gal(K · L/Q 4

2) admits a quotient isomorphic to either (Z/2Z) , or (Z/4Z)3,
and therefore there exists an extension of Q2 whose Galois group is isomorphic to one of
these two groups. The proof then proceeds by showing that no such extensions exists; we
defer the details to the problem set.
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