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23 The idele group, profinite groups, infinite Galois theory

23.1 The idele group

Let K be a global field. Having introduced the ring of adeles AK in the previous lecture, it
is natural to ask about its unit group. As a group we have

A×K = {(av) ∈ AK : av ∈ Kv
× for all v ∈MK , and av ∈ Ov× for almost all v ∈MK},

however, as a subspace of AK , this is not a topological group because the inversion map
a 7→ a−1 need not be continuous.

Example 23.1. Consider K = Q and for each prime p let xp = (1, 1, . . . , 1, 1, p, 1, 1, . . .) ∈
AQ be the adele with a p in its pth component and 1’s elsewhere. Every basic open set U
about 1 in AQ has the form

U =
∏

Uv ×
v∈S V

∏
Ov,

6∈S

with S ⊆MQ finite and 1v ∈ Uv, and it is clear that U contains xp for all sufficiently large p.
It follows that the sequence x2, x3, x5, . . . converges to 1 in the topology of AQ. But notice
that U does not contain x−1p for all sufficiently large p, so the sequence x−12 , x−3

1, x−15 , . . .
cannot possibly converge to 1−1 = 1 in AQ. Thus the function x → x−1 is not continuous
in the subspace topology for A×K .

This problem is not specific to rings of adeles. In general, given a topological ring R,
there is no reason to expect its unit group R× ⊆ R to be a topological group in the subspace
topology unless R happens to be a subring of a topological field (the definition of which
requires inversion to be continuous), as is the case for the unit group OK

× ; this explains why
we have not encountered this problem up to now.

There is a standard solution to this problem, which is to give the group R× the weakest
topology that makes it a topological group. This is done by embedding R× in R × R via
the injective group homomorphism

φ : R× → R×R
r 7→ (r, r−1),

which we may view as an isomorphism R× ' φ(R×). We then declare this to be an
isomorphism of topological groups. This means that the topology on R× is determined by
the subspace topology on φ(R×) ⊆ R × R; the inversion map r 7→ r−1 is then continuous
because it is equal to a restriction of the projection map R × R → R onto its second
coordinate.

If we now consider this construction in the case of A×K , the topology on A×K now has a
basis of open sets of the form

U ′ =
v

∏
Uv × Ov×

∈S v

∏
6∈S

where Uv ⊆ Kv
× and S ⊆ MK is finite. To see this, note that in terms of the embedding

φ : A×K → AK × AK defined above, each φ(a) = (a, a−1) lies in a product U × V of basic
open sets U, V ⊆ AK , and this forces both a and a−1 to lie in Ov, hence in Ov×, for almost
all v. The open sets U ′ are precisely the open sets in the restricted product

∏∐
(Kv
×,Ov×).

This leads to the following definition.
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Definition 23.2. Let K be a global field. The idele group of K is the topological group

IK := (Kv
×,

v
Ov×)

with multiplication defined component-wise,

∐∏
which we view as the subgroup A×K of AK

endowed with the restricted product topology rather than the subspace topology.

Remark 23.3. In the literature one finds the notations IK and A×K used interchangeably;
they both denote the idele group defined above (there is no reason to ever refer to the group
A×K ⊆ AK with the subspace topology, other than to note that it is not a topological group).

The canonical embedding K ↪→ AK restricts to a canonical embedding of K× into IK ,
and we have a surjective homomorphism

IK → IK
a 7→

∏
pvp(a)

where the product ranges over primes of K and vp(a) := vp(av), where v is the place of K
corresponding to the prime p. The composition

K× ↪→ IK � IK

has image PK , the subgroup of principal fractional ideals, and thus induces a homomorphism
of the idele class group CK := IK/K× onto the ideal class group ClK = IK/PK ; we have
the following commutative diagram of exact sequences:

1 K× IK CK 1

1 PK IK ClK 1

Proposition 23.4. Let K be a global field. The idele group IK is a locally compact group.

Proof. We need to show that IK is compact Hausdorff. Each Kv
× is Hausdorff, so vKv

× is
Hausdorff in the product topology, and this implies that (Kv

×,Ov×) ⊆ Kv
× is Hausdorff,

since its topology is finer (this only makes it easier to be Hausdorff). For eac

∏
h nonar-

chimedean place v, the set Ov× =

∐∏ ∏
{x ∈ Kv

× : ‖x‖v = 1} is closed, hence compact (because
the local field Kv is Hausdorff); this applies to almost all v, and the Kv

× are all locally
compact, so the restricted product

∐∏
(Kv
×,Ov×) is locally compact, by Proposition 22.6.

Proposition 23.5. Let K be a global field. Then K× is a discrete subgroup of IK .

Proof. We have K× ↪→ K × K ⊆ AK × AK . By Theorem 22.12, K is a discrete subset
of AK , and it follows that K × K is a discrete subset of AK × AK . The image of K× in
AK × AK lies in IK = A×K ↪→ AK × AK , hence it is discrete in A×K .

Remark 23.6. Discrete sets need not be closed, in general, but discrete subgroups of a
topological Hausdorff group are (we leave it as an exercise for you to prove this).
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We proved last time that K is a discrete cocompact subgroup of AK , so it is naturally to
ask whether K× is a cocompact subgroup of IK = A×K . The answer is no (at least when K
is a number field). An easy way to see this is to note that when K is a number field the
unit group OK

× is not cocompact in K× because LogOK
× is not a (full) lattice in Rr+s; it lies

inside the trace zero hyperplane Rr+s0 (see Proposition 14.7). In order to get a cocompact
subgroup we need to restrict IK to a subgroup corresponding to the trace zero hyperplane.

We have a continuous homomorphism of topological groups

‖ ‖ : IK → R×>0

a 7→ ‖a‖

where ‖a‖ :=
∏
v ‖a‖v. Note that ‖a‖ > 0 for all a ∈ IK , because av ∈ Ov× for almost all v,

and this means that ‖a‖v = 1 for almost all v, so the product v ‖a‖v is effectively a finite
product; it is never 0 because av ∈ Kv

× for all v ∈MK .

∏
Definition 23.7. Let K be a global field. The group of 1-ideles is the topological group

I1K := ker ‖ ‖ = {x ∈ IK : ‖x‖ = 1},

which we note contains K×, by the product formula (Theorem 12.32).

A useful feature of the group of 1-ideles is that, unlike the group of ideles, its topology
is the same as the subspace topology it inherits from AK .

Lemma 23.8. The subspace topologies on I1 ⊆ I and I1K K K ⊆ AK coincide.

Proof. Let U =
∏
v∈S Uv ×

∏
v S Ov× be a basic open set in IK = (Kv

×,Ov×); we assume6∈
without loss of generality that S contains all the archimedean places (put Uv = Kv

× as
needed). We then have

∐∏

U ∩ I1 1
K =

∏
(Uv ∩Kv )×

∏
Ov×,

v∈S v 6∈S

where K1
v := {x ∈ Kv

× : ‖x‖v = 1}. If we now define U ′ := v∈S Uv × v 6∈S Ov, then

U ′ is open in AK because each Uv is open in Kv
× which is open in Kv. We then have

U ′ ∩ I1 = U I1 . Thus every open set of I1K ∩ K K ⊆ IK is also open

∏
in the subspace

∏
topology

on IK ⊆ AK ; the same argument can be applied in the reverse direction (or just note that
that the topology on IK is finer than the subspace topology it inherits from AK).

Lemma 23.9. The group of 1-ideles I1K is a closed subset of AK .

Proof. Consider any x ∈ AK that is not in I1K . We will show that each such x has an open
neighborhood Ux disjoint from I1K . The union of the U 1

x is then the open complement of IK .
Case 1: Suppose ‖x‖ < 1. Let S be a∏finite set containing the archimedean places of K,

all v for which ‖x‖ > 1, and such that v S ‖x‖v < 1 (this is clearly possible given that∈
‖x‖ < 1 and ‖x‖v ≤ 1 for almost all v). Choose εv > 0 small enough so that for all y in the
open set

Ux := {u ∈ AK : ‖u− x‖v < εv for v ∈ S and ‖u‖v ≤ 1 for v 6∈ S} ⊆ AK ;

we have ‖y‖v < 1 (each v 6∈ S is nonarchimedean, so ‖u‖v ≤ 1 is equivalent to uv
1

∈ Ov), so
Ux is basic open set of AK . Then Ux does not intersect IK .
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Case 2: Suppose ‖x‖ > 1. Pick a bound B that is greater than the product of all the
‖x‖v strictly greater than 1. Let S be a finite set that contains all v for which ‖x‖v > 1,
all archimedean v, and all nonarchimedean v whose residue field has cardinality less than
2B. This means that for each v 6∈ S the largest absolute value ‖x‖v strictly less than 1 is
smaller than 1/(2B). For each v ∈ S we now choose εv > 0 so that

‖y − x‖v < εv =⇒ 1 < ‖
v

∏
y‖v < 2B;

∈S

this is possible, since

1 < ‖x‖ ≤
∏
‖x‖v ≤ B < 2B.

v∈S

Define Ux as above and consider any y ∈ Ux. Either ‖y‖v = 1 for all v 6∈ S, in which case
‖y‖ > 1, or ‖y‖v < 1 for some v 6∈ S, in which case ‖y‖v < 1/(2B) for each such v, and
‖y‖ < 1. In either case ‖y‖ =6 1, so y 6∈ I1K and therefore Ux does not intersect I1K .

Theorem 23.10. For any global field K, the group K× is a discrete closed subgroup of the
abelian group of 1-ideles I1K , and the quotient group I1K/K× is compact.

Proof. We know that K× is discrete in IK (by Proposition 23.5), and it is therefore discrete
in the subspace I1K , and closed, since I1K ⊆ IK is Hausdorff (a discrete subgroup of a
Hausdorff space is always closed). As in the proof of Theorem 22.12, it suffices to construct
a compact set W ⊆ AK for which W ∩ I1K surjects onto I1K/K× under the quotient map
(here we are using Lemma 23.9: I1K is closed so W ∩ I1K is compact).

To construct W we first choose x ∈ AK such that ‖x‖ > C, where C is the Blichfeldt-
Minkowski constant in Lemma 22.13, and let

W := {w ∈ AK : ‖w‖v ≤ ‖x‖v for all v ∈MK}.

Now consider any y ∈ I1K . We have ‖y‖ = 1, so ‖x =y‖ ‖x‖ > C, and by Lemma 22.13 there

is a z ∈ K× for which
‖z‖v ≤ ‖x‖v =

∥∥∥xy∥∥∥v
for all v ∈ MK . Therefore zy ∈ W . Thus every y ∈ I1K can be written as ab with
a = z−1 ∈ K× and b = zy ∈ W ∩ I1K . So W ∩ I1K contains a complete set of coset
representatives for K× as desired, and therefore it surjects onto I1K/K× under the quotient
map I1K → I1K/K×, which is continuous, and therefore I1K/K× is compact.

Remark 23.11. When K is a function field the quotient I1K/K× is totally disconnected,
in addition to being compact Hausdorff; as we shall see, this makes it a profinite group.

23.2 Profinite groups

In order to state the main theorems of class field theory in our adelic/idelic setup, rather
than considering each finite abelian extension L of a global field K individually, we prefer
to work in Kab, the compositum of all finite abelian extensions of K. This requires us
to understand the infinite Galois group Gal(Kab/K), which, like all Galois groups, is a
profinite group.
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Definition 23.12. A profinite group is a topological group that is an inverse limit of finite
groups with the discrete topology. Given any topological group G, we can construct a
profinite group by taking the profinite completion

Ĝ := limG/N←
N

⊆−
∏

G/N
N

where N ranges over finite index open normal subgroups, ordered by containment.1 If we
are given a group G without a specified topology, we make it a topological group by giving it
the profinite topology. This is the weakest topology that makes every finite quotient discrete
and is obtained by taking all cosets of finite-index normal subgroups as a basis.

The profinite completion of G is (by construction) a profinite group, and it comes
equipped with a natural homomorphism φ : G → Ĝ that sends each element of G to the
sequences of its images (GN ) in the discrete finite quotients G/N , which we may view as
an element of N G/N . The homomorphism φ is not necessarily injective; this occurs if
and only if the intersection of all finite-index open normal subgroups of G is the trivial
group (such a G

∏
is said to be residually finite), but we always have the following universal

property. For every continuous homomorphism ϕ : G→ H of topological groups there is a
unique continuous homomorphism that makes the following diagram commute

G Ĝ

H

φ

ϕ ∃!

There is a lot one can say about profinite groups but we shall limit ourselves to a few
remarks and statements of the main results we need, deferring the proofs to Problem Set
11; see [3] for a comprehensive treatment of the subject.

Remark 23.13. Taking inverse limits in the category of topological groups is the same thing
as taking the inverse limits in the categories of topological spaces and groups independently:
the topology is the subspace topology in the product, and the group operation is the group
operation in the product (defined component-wise). This might seem obvious, but the same
statement does not apply to direct limits, where one must compute the limit in the category
of topological groups, otherwise the group operation in the direct limit of the groups is not
necessarily continuous under the direct limit topology; see [4].2

Remark 23.14. The profinite completion of G as a topological group is not necessarily
the same thing as the profinite completion of G as a group (forgetting its topology); this
depends on whether the original topology on G contains the profinite topology or not. In
particular, a profinite group need not equal to its profinite completion as a group; the group
Gal(Q/Q) endowed with the Krull topology is an example (see below). Profinite groups
that are isomorphic to their profinite completion as groups are said to be strongly complete;
this is equivalent to requiring every finite index subgroup to be open (see Corollary 23.19
below). It was recently proved that if G is finitely generated as a topological group (meaning
it contains a finitely generated dense subgroup), then G is strongly complete [2].

1Recall that an inverse system has objects Xi and morphisms Xi ← Xj for i ≤ j. Here we have objects
G/Ni and morphisms G/Ni ← G/Nj for i ≤ j; we want the indices ordered so that i ≤ j whenever Ni

contains Nj ; containment induces a canonical morphism g +Ni
2

← g +Nj on the quotients.
For countable direct systems of locally compact groups this issue

[
does not arise [4, Thm. 2.7].
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Remark 23.15. For suitable restricted types of finite groups C (for example, all finite cyclic
groups, or all finite p-groups for some fixed prime p), one can similarly define the notion of
a pro-C group and the pro-C completion of a group by constraining the finite groups in the
inverse system to lie in C. One can also define profinite rings or pro-C rings.

Example 23.16. Here are a few examples of profinite completions:

1. The profinite completion of any finite group G is isomorphic to G with the discrete
topology; the natural map G→ G

2. The profinite completion of Z is

ordered by divisibility; the natural

̂ is an isomorphism.

Ẑ := lim Z/nZ =
∏

Zp, where the indices n are←−n
map Z→ Ẑ is injective but not surjective.

3. The profinite completion of Q is trivial because Q has no finite index subgroups other
than itself. The natural map Q→ Q̂ = {1} is surjective but not injective.

Lemma 23.17. Let G be a topological group with profinite completion G. The image of G
under the natural map φ : G→ G is dense

̂̂ in Ĝ.

Proof. See Problem Set 11.

We now give a topological characterization of profinite groups that can serve as an
alternative definition.

Theorem 23.18. A topological group is profinite if and only if it is totally disconnected
and compact Hausdorff.

Proof. See Problem Set 11.

Corollary 23.19. Let G be profinite group. Then G is naturally isomorphic to its profinite
completion; in fact

G ' limG/U,←−
where U ranges over open normal subgroups (ordered by containment).

However, G is isomorphic to its profinite completion as a group (with the profinite
topology) if and only if every finite index subgroup of G is open.

Proof. See Problem Set 11 for the first statement. For the second statement, if every finite
index subgroup of G is open then every finite-index normal subgroup is open, meaning
that the topology on G is finer than the profinite topology, and we get the same profinite
completion under both topologies.

Conversely, if G has a finite index subgroup H that is not open, then no subgroup
of H is open (since H is the union of the cosets of any of its subgroups); in particular, the
intersection of all the conjugates of H, which is a normal subgroup N , is not open in G, nor
are any of its subgroups. If the topological group G is isomorphic to its profinite completion
Ĝ as a group, then by the universal property of the profinite completion the natural map
φ : G → Ĝ is an isomorphism, but the image of N under φ is an open subgroup of Ĝ by
construction, which is a contradiction.
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23.3 Infinite Galois theory

The key issue that arises when studying Galois groups of infinite algebraic extensions (as
opposed to finite ones) is that the Galois correspondence (the inclusion reversing bijection
between subgroups and subextensions) no longer holds. As you proved on Problem Set 5
in the case Gal(Fq/Fq) ' Ẑ '

∏
p Zp, this happens for a simple reason: there are too many

subgroups. For a more extreme example, the absolute Galois group of Q has uncountably
many subgroups of index 2 (all of which are necessarily normal) but Q has only countably
many quadratic extensions, see [1, Aside 7.27].

Thus not all subgroups of an infinite Galois group Gal(L/K) correspond to subextensions
of L/K. We are going to put a topology on Gal(L/K) that distinguishes those that do.

Lemma 23.20. Let L/K be a Galois extension with Galois group G = Gal(L/K), If F/K
is a normal subextension of L/K, then H = Gal(L/F ) is a normal subgroup of G with fixed
field F , and we have an exact sequence

1→ Gal(L/F )→ Gal(L/K)→ Gal(F/K)→ 1,

where the first map is inclusion and the second map is induced by restriction, and we have

G/H ' Gal(F/K).

Proof. If F/K is a normal subextension of L/K then the restriction map σ 7→ σ|F defines a
homomorphism Gal(L/K)→ Gal(F/K) whose kernel is a normal subgroup H = Gal(L/F ).
The fixed field ofH contains F by definition, and it must be equal to F : if we had α ∈ LH−F
we could construct an element of H that sends α to a distinct root α′ 6= α of its minimal
polynomial f over F (this defines an element of Gal(E/F ), where E is the splitting field
of f , which can be extended to Gal(L/F ) = H by embedding L in an algebraic closure and
applying Theorem 4.11). The restriction map is surjective because any σ ∈ Gal(F/K) can
be extended to Gal(L/K), by Theorem 4.11, thus the sequence in the lemma is exact, and
G/H ' Gal(F/K) follows.

Unlike the situation for finite Galois extensions, it can happen that a normal subgroup H
of Gal(L/K) with fixed field F is not equal to Gal(L/F ); it must be contained in Gal(L/F ),
but it could be a proper subgroup. This is exactly what happens for all but a countable
number of the uncountably many index 2 subgroups H of G = Gal(Q/Q); the fixed field of
H is Q but H ( G is not the Galois group of Q/Q, or of any extension of Q in Q. It is thus
necessary to distinguish the subgroups of Gal(L/K) that are actually Galois groups. This
is achieved by putting an appropriate topology on the Galois group.

Definition 23.21. Let L/K be a Galois extension with Galois group G := Gal(L/K). The
Krull topology on G is defined by taking as a basis all cosets of subgroups HF := Gal(L/F ),
where F ranges over finite normal extensions of K in L.

Under the Krull topology every open normal subgroup necessarily has finite index, but
it is typically not the case that every normal subgroup of finite index is open. Thus the
Krull topology on Gal(L/K) is strictly coarser than the profinite topology, in general (this
holds for Gal(Q/Q), for example). However, the topological group we obtain by putting
the Krull topology on Gal(L/K) is a profinite group.
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Theorem 23.22. Let L/K be a Galois extension. Under the Krull topology, the restriction
maps induce a natural isomorphism of topological groups

φ : Gal(L/K)→ lim Gal(F/K),←−

where F ranges over finite Galois extensions of K in L. In particular, Gal(L/K) is a
profinite group whose open normal subgroups are precisely those of the form Gal(L/F ) for
some finite Galois extension F/K.

Proof. Every element of L is algebraic over K, hence lies in some finite Galois subextension
F/K. Thus each automorphism in Gal(L/K) is uniquely determined by its restrictions to
the F/K, which implies that φ is injective. Given an element (σF ) ∈ lim Gal(F/K), we can
define an automorphism σ Gal(L/K) by simply putting σ(α) = σ

←
F
−

∈ (α), where F is the
normal closure of K(α) (the fact that this actually gives an automorphism is guaranteed by
the inverse system of restriction maps used to define lim Gal(F/K)). Thus φ is surjective.

By Lemma 23.20, if we put G := Gal(L/K) and H
←
F
−

:= Gal(L/F ), then we can view φ
as the natural map

φ : G→ limG/H←− F ,

which is continuous, and we have shown it is a bijection. To prove that φ is an isomorphism
of topological groups it remains only to show that it is an open map. For this it suffices to
show that φ maps open subgroups H ⊆ G to open sets of limG/HF , since every open set
in G is a union⋃of cosets of open subgroups (if φ(H) is open

←−
so is φ(σH) = σφ(H), for any

σ ∈ G, and φ( Ui) =
⋃
i φ(Ui) for any family of open sets Ui). If H = Gal(L/F ) then

φ(H) = {(σE) : σ 1
E |E∩F = 1G|E∩F } = πE

− (1G|F ),

where E/K ranges over finite Galois subextensions of L/K and πE is the projection map
from the inverse limit to Gal(E/K). The set {1G|F } is open in the discrete group Gal(E/F ),
so its inverse image under the continuous map πE is open.

The last statement follows from Lemma 23.20 and Corollary 23.19.

Theorem 23.23 (Fundamental theorem of Galois theory). Let L/K be a Galois extension
and let G := Gal(L/K) be endowed with the Krull topology. The maps F 7→ Gal(L/F )
and H 7→ LH define an inclusion preserving bijection between subextensions F/K of L/K
and closed subgroups H of G. Under this correspondence, subextensions of finite degree n
correspond to subgroups of finite index n, and normal subextensions F/K correspond to
normal subgroups H ⊆ G such that Gal(F/K) ' G/H as topological groups.

Proof. We first note that every open subgroup of G is closed, since it is the complement
of the union of its non-trivial cosets, all of which are open, and closed subgroups of finite
index are open by the same argument.

The correspondence between finite Galois subextensions F/K and finite index closed
normal subgroups H then follows the previous theorem, and we have [F : K] = [G : H]
because G/H ' Gal(F/K), by Lemma 23.20.

If F/K is any finite subextension with normal closure E, then H = Gal(L/F ) contains
the normal subgroup N = Gal(L/E) with finite index. The subgroup N is open and
therefore closed, thus H is closed since it is a finite union of cosets of N . The fixed field
of H is F (by the same argument as in the proof of Lemma 23.20), thus finite subextensions
correspond to closed subgroups of finite index. Conversely, every closed subgroup H of
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finite index has a fixed field F of finite degree, since the intersection of its conjugates is
a normal closed subgroup N = Gal(L/E) of finite index whose fixed field E contains F
and has finite degree. The degrees and indices match because [G : N ] = [G : H][H : N ]
and [E : K] = [F : K][E : F ]; by the previous argument for finite normal subextensions,
[E : K] = [G : N ] and [E : F ] = [H : N ] (for the second equality, replace L/K with L/F
and G with H).

Any subextension F/K is the union of its finite subextensions E/K. The intersection
of the corresponding closed finite index subgroups Gal(L/E) is equal to Gal(L/F ), which
is therefore closed. Conversely, every closed subgroup H of G is an intersection of basic
closed subgroups, all of which have the form Gal(L/E) for some finite subextension E/K,
thus H = Gal(L/F ), where F is the union of the E.

The isomorphism Gal(F/K) ' G/H for normal subextensions/subgroups follows di-
rectly from Lemma 23.20.

Corollary 23.24. Let L/K be a Galois extension and let H be a subgroup of Gal(L/K)
with fixed field F . The closure H of H in the Krull topology is Gal(L/F ).

Proof. The Galois group Gal(L/F ) contains H, since it contains every element of Gal(L/K)
that fixes F , and it is closed, by the previous theorem. Thus Gal(L/F )∩H is a closed group
containing H, so Gal(L/F ) ∩H ⊆ H and therefore Gal(L/F ) = H.

We conclude this section with the following theorem due to Waterhouse [5].

Theorem 23.25 (Waterhouse 1973). Every profinite group G is isomorphic to the Galois
group of some Galois extension L/K.

Proof sketch. Let X be the disjoint union of the finite discrete quotients of G equipped with
the G-action induced by multiplication. Now let k be any field and define L = k(X) as a
purely transcendental extension of k with indeterminates for each element of X. We can
view each σ ∈ G as an automorphism of L that fixes k and sends each x ∈ X to σ(x), and
since G acts faithfully on X, we can view G as a subgroup of Autk(L). Now let K = LG.
Then L/K is a Galois extension with G ' Gal(L/K), by [5, Thm. 1].

Remark 23.26. Although this proof lets us choose any field k we like, we have no way to
control K. In particular, it is not known whether every profinite group G is isomorphic to
a Galois group over K = Q; indeed, this is not even known for finite G.
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