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25 Global class field theory, the Chebotarev density theorem

25.1 Global fields

Recall that a global field is a field with a product formula whose completion at any nontrivial
absolute value is a local field. As proved on Problem Set 7, every such field is one of:

• number field : finite extension of Q (characteristic 0, has an archimedean place);

• global function field : finite extension of Fp(t) (characteristic p, no archimedean places).

An equivalent characterization of a global function field is that it is the function field of a
smooth projective (geometrically integral) curve over a finite field.

In Lecture 22 we defined the adele ring AK of a global field K as the restricted product

AK := (Kv,Ov) = (av) ∈ Kv : av ∈ Ov for almost all v ,

over all of its places

∐∏
(equivalence classes

{
of

∏
absolute values) v; here Kv denotes

}
the com-

pletion of K at v (a local field), and Ov is the valuation ring of Kv if v is nonarchimedean,
and Ov = Kv otherwise. As a topological ring, AK is locally compact and Hausdorff. The
field K is canonically embedded in AK via the diagonal map x 7→ (x, x, x, . . .) whose image
is discrete, closed, and cocompact; see Theorem 22.12.

In Lecture 23 we defined the idele group

IK :=
∐∏

(Kv
×,Ov×) =

{
(av) ∈

∏
Kv
× : av ∈ Ov× for almost all v ,

which coincides with the unit group of AK as a set but not as a topological

}
space (the

restricted product topology ensures that a 7→ a−1 is continuous, which is not true of the
subspace topology). As a topological group, IK is locally compact and Hausdorff. The mul-
tiplicative group K× is canonically embedded in IK via the diagonal map x 7→ (x, x, x, . . .),
and the idele class group is the quotient CK := IK/K× (which we recall is not compact; to
get a compact quotient one must restrict to the norm-1 subgroup I1K := {a ∈ IK : ‖a‖ = 1}).

25.2 The idele norm

Recall from Lecture 23 that the idele group IK surjects onto the ideal group IK via

a 7→
∏

pvp(a),

and we have the following commutative diagram of exact sequences:

1 K× IK Ck 1

1 PK IK Clk 1

Definition 25.1. Let L/K is a finite separable extension of global fields. The idele norm
NL/K : IL → IK is defined by NL/K(bw) = (av), where each

av :=
∏

NLw/Kv
(bw)

w|v

is a product over places w of L that extend the place v of K and NLw/Kv
: Lw → Kv is the

field norm of the corresponding extension of local fields Lw/Kv.
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It follows from Corollary 11.5 and Remark 11.6 that the idele norm NL/K : IL → IK
agrees with the field norm NL/K : L× → K× on the subgroup of principal ideles L× ⊆ IL.
The field norm is also compatible with the ideal norm NL/K : IL → IK (see Proposition 6.6),
and we thus obtain the following commutative diagram

L× IL IL

K× IK IK

NL/K NL/K NL/K

The image of L× in IL under the composition of the maps on the top row is precisely the
group PL of principal ideals, and the image of K× in IK is similarly PK . Taking quotients
yields induced norm maps on the idele and ideal class groups that make the following
diagram commute:

CL ClL

CK ClK

NL/K NL/K

25.3 The global Artin homomorphism

Let K be a global field and let Kab be its maximal abelian extension inside some fixed
separable closure Ksep. We are going to use the local Artin homomorphisms introduced in
the previous lecture to construct the global Artin homomorphism

θK : IK → Gal(Kab/K).

For each place v of K we embed the local field Kv into the idele group IK via the map

Kv
× ↪→ IK
α 7→ (1, 1, . . . , 1, α, 1, 1, . . .),

whose image intersects K× ⊆ IK trivially. This embedding is compatible with the idele
norm in the following sense: if L/K is any finite separable extension and w is a place of L
that extends the place v of K then the diagram

L×w K×v

IL IK

NLw/Kv

NL/K

commutes.
For each of the local fields Kv let Kab

v be the maximal abelian extension of Kv inside
sepsome fixed separable closure of Kv . Let

θKv : Kv
× → Gal(Kab

v /Kv)

be the corresponding local Artin homomorphism. Recall from Theorem 24.2 that for each
finite abelian extension Lw/Kv the map θLw/Kv

: Kv
× → Gal(Lw/Kv) obtained by com-

posing θKv with the quotient map Gal(Kab
v /K) → Gal(Lw/Kv) induces an isomorphism
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Kv
×/NLw/Kv

(L×w)→ Gal(Kab
v /K), and taking profinite completions yields an isomorphism

of profinite groups

θ̂Kv : K̂v
× −∼→ Gal(Kab

v /Kv).

Let L/K be a finite abelian extension in Kab and let v be a place of K. For each place
w of L extending v we embed Gal(Lw/Kv) in Gal(L/K) as follows:

• if v is archimedean then either Lw ' Kv and we identify Gal(Lw/Kv) with the trivial
subgroup of Gal(L/K), or Lw/Kv ' C/R and we identify Gal(Lw/Kv) with the
subgroup of Gal(L/K) generated by complex conjugation (which must be nontrivial).

• if v is nonarchimedean, let q be the prime of L corresponding to the place w and iden-
tify Gal(Lw/Kv) with the decomposition group Dq ⊆ Gal(L/K) via the isomorphism
given by part (6) of Theorem 11.4.

We now observe that this embedding is the same for every place w of L extending v: this
is obvious in the archimedean case, and in the nonarchimedean case the decomposition
groups Dq are all conjugate subgroups of Gal(L/K) and must coincide because Gal(L/K)
is abelian.

For each place v, let Lv be a completion of L at a place w|v and define

θL/K : IK → Gal(L/K)

(av) 7→
∏

θLv/Kv
(av),

v

where the product takes place in Gal(L/K) via the embeddings Gal(Lv/Kv) ⊆ Gal(L/K).
This is a finite product because almost for almost all v we have av ∈ Ov× and v unramified
in L, in which case θLv/Kv

(av) is necessarily trivial. It is clear that θL/K is a homomorphism,
since each θLw/Kv

is, and θL/K is continuous, since the inverse image of any subgroup of
the finite group Gal(L/K) is clearly an open subgroup of IK (because almost all of its
projections to Kv

× contain Ov×).
If L1 ⊆ L2 are two finite abelian extensions of K, then then θL2/K(x)|L = θL1/K(x)

1

for all x ∈ IK ; thus the θL/K form a compatible system of homomorphisms from IK to the

inverse limit limL/K, where L/K ranges over finite abelian extensions of K in Kab ordered
by inclusion,

←
and
−

they thus determine a continuous homomorphism IK → lim Gal(L/K).←−
Definition 25.2. The global Artin homomorphism is the continuous homomorphism

θK : IK → lim Gal(L/K) ' Gal(Kab/K)←−

determined by the compatible system of homomorphisms θL/K : IK → Gal(L/K).

The isomorphism Gal(Kab/K) ' lim Gal(L/K) is the natural isomorphism between a
Galois group and its profinite completion

←−
with respect to the Krull topology (see Theo-

rem 23.22) and is thus canonical, as is the global Artin homomorphism θK .

Proposition 25.3. Let K be global field. The global Artin homomorphism θK is the unique
continuous homomorphism I → Gal(Kab

K /K) with the property that for every finite abelian
extension L/K in Kab and place w of L lying over a place v of K the diagram
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Kv
× Gal(Lw/Kv)

IK Gal(L/K)

θLw/Kv

θL/K

commutes, where θL/K(x) := θK(x)|L.

Proof. That θK has this property follows directly from its construction. Now suppose
θK
′ : IK → Gal(Kab/K) has the same property. The idele group IK is generated by the

images of the embeddings Kv
×, so if θK and θK

′ are not identical, then they disagree at a
point a := (1, 1, . . . , 1, av, 1, 1, . . .) in the image of one the embeddings Kv ↪→ IK . We must
have θL/K(a) = φ(θLw/Kv

(a ab
v)) = θL/K

′ (a) for every finite abelian extension L/K in K and
every place w of L extending v, where φ is the embedding on the RHS of the commutative
diagram. This implies θK(a) = θK

′ (a), since the image of a under any homomorphism to
Gal(Kab/K) ' lim Gal(L/K) is determined by its images in the Gal(L/K).←−

25.4 The main theorems of global class field theory

In the global version of Artin reciprocity, the idele class group CK := IK/K× plays the role
that the multiplicative group Kv

× plays in local Artin reciprocity (Theorem 24.2).

Theorem 25.4 (Global Artin Reciprocity). Let K be a global field. The kernel of the
global Artin homomorphism θK contains K×, thus it induces a continuous homomorphism

θK : CK → Gal(Kab/K).

For every finite abelian extension L/K in Kab the homomorphism

θL/K : CK → Gal(L/K)

obtained by composing θK with the quotient map Gal(Kab/K) → Gal(L/K) is surjective
with kernel NL/K(CL) and thus induces an isomorphism CK/NL/K(CL) ' Gal(L/K).

Remark 25.5. When K is a number field, θK is surjective but not injective; its kernel
is the connected component of the identity in CK . When K is a global function field, θK
is injective but not surjective; its image is consists of automorphisms σ ∈ Gal(Kab/K)
corresponding to integer powers of the Frobenius automorphism of Gal(ksep/k), where k is
the constant field of K (this is precisely the dense image of Z in Ẑ ' Gal(ksep/k)).

We also have a global existence theorem.

Theorem 25.6 (Global Existence Theorem). Let K be a global field. For every finite
index open subgroup H of CK there is a unique finite abelian extension L/K inside Kab for
which NL/K(CL) = H.

As with the local Artin homomorphism, taking profinite completions yields an isomor-
phism that allows us to summarize global class field theory in one statement.

Theorem 25.7 (Main theorem of global class field theory). Let K be a global
field. The global Artin homomorphism θK induces a canonical isomorphism

θ

of profinite groups.

K̂ : Ĉ −∼→ Gal(Kab
K /K)
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We thus have inclusion preserving bijections

{ closed subgroups H of CK} ←→ { abelian extensions L/K in Kab}
{ finite index open subgroups H of CK} ←→ { finite abelian extensions L/K in Kab}

and corresponding isomorphisms CK/H ' Gal(L/K), where H = NL/K(CL). We also note
that the global Artin homomorphism is functorial in the following sense.

Theorem 25.8 (Functoriality). Let K be a global field and let L/K be any finite sep-
arable extension (not necessarily abelian). Then the following diagram commutes

CL Gal(Lab/L)

CK Gal(Kab/K).

θL

NL/K res

θK

25.5 Relation to ideal-theoretic version of global class field theory

Let K∏be a global field and let m be a modulus for K, which we recall is a formal product
m = vev over the places v of K with ev ≥ 0, where ev ≤ 1 when v is a real archimedean
place and ev = 0 when v is a complex archimedean place (see Definition 20.1). For each
place v of K we define the multiplicative group

Ov× if v 6 | m, where Ov× := Kv
× when v is infinite),

Um
K(v) := R >0 if v|m is real, where R>0

ev

⊆ R× ' Kv
×,

1 + p if v|m is finite, where p = {x ∈ Ov : |x|v < 1}.

We then let Um
K :=

∏
v U

m
K(v) ⊆ IK be the corresponding open subgroup of IK . The image

m
UK of Um

K in the idele class group CK = IK/K× is an open subgroup with finite index. The
idelic version of a ray class group is the quotient

Cm
K := IK/(Um

K ·K×) = CK/
m

UK ,

and we have isomorphisms

Cm
K ' ClmK ' Gal(K(m)/K),

where ClmK is the ray class group for the modulus m (see Definition 20.2), and K(m) is the
corresponding ray class field, which we can now define as the finite abelian extension L/K
for which NL/K(CL) =

m
UK , whose existence is guaranteed by Theorem 25.6.

If L/K is any finite abelian extension, then NL/K(CL) contains U
m
L for some modulus m;

this follows from the fact that the groups
m

UL form a fundamental system of open neighbor-
hoods of the identity. Indeed, the conductor of the extension L/K (see Definition 21.15)
is precisely the minimal modulus m for which this is true. It follows that every abelian
extension L/K lies in a ray class field K(m) and has Galois group isomorphic to a quotient
of a ray class group Cm

K .
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25.6 The Chebotarev density theorem

We now give a proof of the Chebotarev density theorem, a generalization of the Frobenius
density theorem you proved on Problem Set 10. Recall from Lecture 17 (and Problem Set 9)
that if S is a set of primes of a global field K, the Dirichlet density of S is defined by

s
S

d(S) := lim
s +

∑
p N(p)−∈

→1
∑

p N(p)−s
= lim

s→1+

∑
p∈S N(p)−s

log 1 ,
s−1

whenever this limit exists. As you proved on Problem Set 9, if S has a natural density then
it has a Dirichlet density and the two coincide (and similarly for polar density). A subset
C of a group is said to be stable under conjugation if στσ−1 ∈ C for all σ ∈ G and τ ∈ C.

Theorem 25.9 (Chebotarev density theorem). Let L/K be a finite Galois extension
of number fields with Galois group G := Gal(L/K). Let C ⊆ G be stable under conjugation,
and let S be the set of primes p of K unramified in L with Frobp ⊆ C. Then d(S) = #C/#G.

Note that G is not assumed to be abelian, so Frobp is a conjugacy class, not an element.
However, the main difficulty in proving the Chebotarev density theorem (and the only place
where class field theory is actually needed) occurs when G is abelian. The main result we
need is the generalization of Dirichlet’s theorem on primes in arithmetic progressions to
number fields, which we proved in Lecture 21, subject to the existence of ray class fields,
which we now assume.

Proposition 25.10. Let m be a modulus for a number field K and let ClmK be the corre-
sponding ray class group. For every ray class c ∈ ClmK the Dirichlet density of the set of
primes p of K that are prime to m and lie in c is 1/#ClmK .

Proof. This follows from Theorem 25.6, which guarantees that the ray class field K(m)
exists, and Theorem 21.11, Corollary 21.12, and Corollary 21.14, from Lecture 21.

Corollary 25.11. Let L/K be an abelian extension of number fields with Galois group G.
For every σ ∈ G the Dirichlet density of the set S of unramified primes p of K for which
Frobp = {σ} is 1/#G.

Proof. Let m = cond(L/K) be the conductor of the extension L/K; then L is a subfield
of the ray class field K(m) and Gal(L/K) ' ClmK/H for some subgroup H of the ray class
group. For each unramified prime p of K we have Frobp = {σ} if and only if p lies in one
of the ray classes contained in the coset of H in ClmK/H corresponding to σ. The Dirichlet
density of the set of primes in each ray class is 1/#ClmK , by Proposition 25.10, and there
are #H ray classes in each coset of H; thus d(S) = #H/#ClmK = 1/#G.

Proof of the Chebotarev density theorem. We first note that it suffices to prove the theorem
in the case that C is a single conjugacy class, since we can always partition C into conjugacy
classes and sum Dirichlet densities (as proved on Problem Set 9). If L/K is abelian then
#C = 1 and the theorem follows from Corollary 25.11.

For the general case, let σ be a representative of the conjugacy class C, let H = 〈σ〉 be
the subgroup of G it generates, and let F = LH be the corresponding fixed field. Let T be
the set of primes q of F that are unramified in L for which Frobq = σ; the extension L/F
is abelian with Galois group H, so d(T ) = 1/#H follows from the abelian case. Restricting
to degree-1 primes (primes whose residue field has prime order) does not change Dirichlet
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densities (as you proved on Problem Set 9), so we now restrict S and T to their subsets of
degree-1 primes.

We claim that for each prime p ∈ S there are exactly #G/(#H#C) primes q ∈ T that
lie above p. Assuming the claim, we have∑

s #H#C
N(p)− =

p∈S
q

#

∑
N( )−s,

G
q∈T

since N(q) = N(p) for each degree-1 prime q lying above a degree-1 prime p; it follows that

#H#C
d(S) =

#G
d(T ) =

#C

#G

as desired.
We now prove the claim. Let U be the set of primes r of L for which r∩K = p ∈ S and

Frobr = σ. For each r ∈ U , if we put q := r ∩ F then Frobq = σ, and since σ fixes F it acts
trivially on Fq := OF /q, so the residue field extension Fq/Fp is trivial and q ∈ T . On the
other hand, Gal(L/F ) = 〈σ〉 = H, so the residue field extension Fr/Fq has degree #H, and
this implies that r is the only prime of L above q. Conversely, for each q ∈ F , every prime
r of L above q must have Frobr = σ (the Frobr are conjugate in H = Gal(L/F ) and must
be equal since H is abelian), hence lie in U , and have residue degree [Fr : Fq] = #H, hence
be the unique prime of L above q.

The sets U and T are thus in bijection, so to count the primes q ∈ T that lie above some
prime p ∈ S it suffices to count the primes r ∈ U that lie above p. The set X of primes
r of L that lie above p has cardinality #G/#H, since the primes #r are all unramified
and have residue degree #H. The transitive action of G on X partitions it into #C orbits
corresponding to the conjugates of σ, each of which has size #G/(#H#C). Each orbit
corresponds to a possible value of Frobr, all of which are conjugate to σ and exactly one
of which is equal to σ; this orbit is the set of primes r of L above p that lie in U and has
cardinality #G/(#H#C), which proves the claim and completes the proof.

Remark 25.12. The Chebotarev density theorem holds for any global field; the general-
ization to function fields was originally proved by Reichardt [3]; see [2] for a modern proof
(and in fact a stronger result). In the case of number fields (but not function fields!) Cheb-
otarev’s theorem also holds for natural density. This follows from results of Hecke [1] that
actually predate Chebotarev’s work; Hecke showed that the primes lying in any particular
ray class (element of the ray class group) have a natural density.
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