18.785 Number theory I Fall 2015
Lecture #5 09/24/2015

5 Factoring primes in Dedekind extensions

5.1 Ramification and inertia

Let us recall the “AK LB setup”: we are given a Dedekind domain A (assumed not a field)
with fraction field K and a finite separable extension L/K, and we define B to be the
integral closure of A in L. In the previous lecture we proved that B is a Dedekind domain
and L with fraction field.

To simplify the language, whenever we have a Dedekind domain A, by a prime of A
(or of its fraction field K), we mean a nonzero prime ideal; the prime elements of A are
precisely those that generate nonzero principal prime ideals, so this generalizes the usual
terminology. Note that 0 is (by definition) not prime, even though (0) is a prime ideal;
when we refer to a prime of A we are specifically excluding the zero ideal, equivalently
(since dim A = 1), we are restricting to maximal ideals.

If p is a prime of A, the ideal pB is not necessarily a prime of B, but it can be uniquely
factored in the Dedekind domain B as

pB =[] o
q

Our main goal for this lecture and the next is to understand the relationship between the
prime p and the primes q dividing pB. Such prime ideals q are said to lie over or above the
prime ideal p. As an abuse of notation, we will often write q|p to indicate this relationship
(there is little risk of confusion, the prime p is not divisible by any primes of A other than
itself). We now note that the primes q lying above p are precisely those whose contraction
to A is equal to p. This applies not only in the AK LB setup, but whenever A is an integral
domain of dimension one contained in a Dedekind domain B.

Lemma 5.1. Let A be a domain of dimension one contained in a Dedekind domain B.
Let p be a prime of A and let q be a prime of B. Then qlp if and only if gN A = p.

Proof. 1f q divides pB then it contains pB, and then qN A contains p BN A which contains p;
the ideal p is maximal and qN A # A, so qN A = p. Conversely, if N A = p then q = qB
certainly contains (q N A)B = pB, and B is a Dedekind domain, so q divides pB. O

The primes p of A are all maximal ideals, so each has an associated residue field A/p,
and similarly for primes q of B. If q lies above p then we may regard the residue field B/q
as a field extension of q; indeed, the kernel of the map A — B — B/qis p = ANgq, and the
induced map A/p — B/q is a ring homomorphism of fields, hence injective.

Definition 5.2. Assume AKLB, and let p be a prime of A. The exponent e; in the
factorization pB = Hq‘p q° is the ramification index of q and the degree f; = [B/q: A/p] is
the residue degree, or local degree, of q. In situations where more than one relative extension
of Dedekind domains is under consideration, we may write ey, for eq and fy/, for fq.

The residue degree f; is also called its inertia degree of q for reasons that will be explained
in later lectures. The set of primes q lying above p is called the fiber above p which we may
denote {q|p}; it is the fiber of the surjective map Spec B — Spec A defined by q — q N A.

Lemma 5.3. Let A be a Dedekind domain with fraction field K, let M/L/K be a tower
of finite separable extension, and let B and C be the integral closures of A in L and M
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respectively. Then C' is the integral closure of B in M, and if v is a prime of M lying above
a prime q of L lying above a prime p of K then e s, = ec/q€q/p and fryy = fesqfqsp-

Proof. Easy exercise. O

Example 5.4. Let A = 7Z, with K = Frac A = Q, and let L = Q(¢) with [L : K] = 2. The
prime p = (5) factors in B = Z[i] into two distinct prime ideals:

BZ[i] = (2 +1)(2 —4)

The prime (2 + i) has ramification index €4q) = 1, and ep_; = 1 as well. The residue
field Z/(5) is isomorphic to the finite field F5, and we also have Z[i]/(2 4+ i) ~ F5 (as can
be determined by counting the Z[i]-lattice points in a fundamental parallelogram of the
sublattice (2 + ) in Z[i]), so fa44) = 1, and similarly, fo_;) = 1.

By contrast, the p = (7) remains prime in B = Z[i]; its prime factorization is simply

where now (7) denotes a principal ideal in B (this is clear from context). The ramification
index of (7) is thus e(;) = 1, but its residue field degree is f(7) = 2, because Z/(7) ~ 7, but
Z[i]/(7) ~ Fy9 has dimension 2 has an Fr-vector space.

The prime p = (2) factors as

(2) = (1+4)%,

since (1+14)? = (142i—1) = (2i) = (2) (note that 7 is a unit). You might be thinking that
(2) = (1+14)(1 —4) factors into distinct primes, but note that (1 +14) = —i(1+1i) = (1 —1).
Thus e(144) = 2, and f144) = 1 because Z/(2) ~ Fa ~ Z[i] /(1 +1).

Let us now compute the sum th: eqfq for each of the primes p we factored above:

Z eqfqa = eqviyfat =2-1=2,

ql(2)

Z eqfqa = eviyferi) te@—iyfe—p =1-1+1-1=2,
ql(5)

Y eqfi=emfn=2-1=2

al(7)

In all three cases we obtain 2 = [Q(¢) : Q]; as we shall shortly prove, this is not an accident.

Example 5.5. Let A = C[z], with K = FracA = C(z), and let L = C(y/z) = FracB,
where B = C[z,y]/(y* — z). Then [L : K| = 2. The prime p = (x —4) factors in B into two
distinct prime ideals:

(2 —4) =" -4 =(y+2)(y - 2).
We thus have e(y42) = 1, and f(,49) = [B/(y +2) : A/(x —4)] = [C : C] = 1. Similarly,

e(y—2) = 1 and f,_oy = 1.
The prime p = x factors in B as
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and e(,) = 2 and f(,) = 1. As in the previous example, 3., €qfq = [L : K] in both cases:

> eafo=eqinfwrn) teg-nfy-g=1-1+1-1=2,
ql(z—4)

Z eqfa =ewfpy =2-1=2.
al(z)

Before proving that ) alp €afa = [L : K] always holds, we note the following. While the
ring B/pB is in general not a field extension of A/p (because it is not necessarily a field),
it is always an (A/p)-algebra, and in particular, an (A/p)-vector space.

Lemma 5.6. Assume AKLB and let p be a prime of A. The dimension of B/pB as an
A/p-vector space is equal to the dimension of L as a K-vector space, that is

[B/pB: A/p| =[L: K].

Proof. Let S=A—p,let A’ =S71A = A, and let B' = S71B (note that S is closed under
finite products, both as a subset of A and as a subset of B, so this makes sense). Then
AlfpA = (STTA)/(pSTIA) = Ap/(pAp) = Afp,
and
B'/pyB'=S"'B/pS~'B ~ B/pB,

Thus if the lemma holds when A = A, is a DVR then it also holds for A, so we may assume
without loss of generality that A is a DVR, and in particular, a PID. We proved in the
previous lecture that B is finitely generated as an A-module (see Proposition 4.60), and it
is certainly torsion free as an A-module, since it is a domain and contains A. It follows
from the structure theorem for modules over PIDs that B is free of finite rank over A, and
B spans L as a K-vector space (see Proposition 4.55). It follows that the rank of B as an
A-module (which is the same as the rank of B/pB as an A/p-module), is the same as the
dimension of L as a K-vector space: any basis for B as an A-module is also a basis for

L as a K-vector space, and after clearing denominators if necessary, any basis for L as a
K-vector space is also a basis for B as an A-module. Thus [B/pB : A/p] = [L : K]. O

Theorem 5.7. Assume AKLB. For each prime p of A we have
Zeqfq =I[L: K].

alp
Proof. We have

B/pB~ ][] B/a"
alp
Applying the previous proposition gives

[L:K]|=[B/pB: Alp]
=> [B/q": A/p]

qlp

= elB/a: Afp]

qlp

= Zeqfq.

qlp
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The third equality uses the fact that B/q% has dimension eq as a B/q-vector space; indeed,
we can take the images in B/q® of any b; € B with vq(b;) =i for i =0,...,e4—1 as a basis
(recall that q° = {b € B : vq(b) > €4}). Indeed, if we pick a uniformizer 7 for By that lies
in B then B/q% ~ (B/q)[7] ~ (B/q)[x]/(x), where T is the image of 7w in B/q®. O

For each prime p of A, let g, := {q|p} denote the cardinality of the fiber above p.

Corollary 5.8. Assume AKLB and let p be a prime of A. The integer g, lies between 1
and n = [L : K|, as do the integers eq and fq for each q|p.

We now define some standard terminology that is used in the AK LB setting to describe
how a prime p of K splits in L (that is, for a nonzero prime ideal p of A, how the ideal pB
factors into nonzero prime ideals q of B).

Definition 5.9. Assume AKLB, let p be a prime of A.

o L/K is totally ramified at q if eq = [L : K| (equivalently, f; =1 =g, = 1).
o L/K is unramified at q if e, =1 and B/q is a separable extension of A/p.

e L/K is unramified above p if it is unramified at all q|p, equivalently, if B/pB is a finite
étale algebra over A/p.

When L/K is unramified above p we say that

e p remains inert in L if pB is prime (equivalently, eq = g = 1, and f; = [L : k]).
o p splits completely in L if g, = [L : K] (equivalently, eq = f; = 1 for all q|p).

5.2 Extending valuations

Recall that associated to each prime p in a Dedekind domain A we have a discrete valua-
tion v, on the fraction field K; it is the extension of the discrete valuation v, on the DVR A,
(which also has fraction field K). In the AK LB setup the primes q of B similarly give rise
to discrete valuations vg on L, and we would like to understand the relationship between
the valuation v, and the valuations vj.

Definition 5.10. Let L/K be a finite separable extension, and let v and w be discrete
valuations on K and L respectively. If w|x = ev for some e € Z~( then we say that w
extends v with indez e.

We will show that the discrete valuations of L that extend discrete valuations v, of K are
precisely the discrete valuations vq for q|p, and that each such vy extends v, with index e,
where eq is the ramification index. This should strike you as remarkable. Valuations are
in some sense a geometric notion, since they give rise to absolute values that can be used
to define a distance metric, it is thus a bit surprising that they are also sensitive to the
splitting of primes in extensions, which is very much an algebraic notion.

Theorem 5.11. Assume AK LB and let p be a prime of A. For each prime q|p, the discrete
valuation vy extends vy, with index eq. Moreover, the map q — vy is a bijection from the set
of primes q|p to the set of discrete valuations of L that extend vy.
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Proof. Let qlp and let pB = [],, t* be the prime factorization of pB. We have

tlp

0B)g = [ [Tv | =]]ve=11(B)™ = (aBy),

tlp q tlp

since tBq = By for all primes ¢t # q (because elements of v — g are units in By). For any
m € Z we have p™ By = (qBy)“™. Therefore vq(p" By) = eqm = equp(p™Ap), and it follows
that for any I € T4 we have vq(IBy) = equp(fAp). In particular, for any x € K* we have

vq(x) = vq(xByq) = equp(zAy) = equp(),

which shows that vy extends v, with index eq as claimed.

If g and v are two distinct primes above p then neither contains the other and for any
x € q—t we have vq(x) > 0 > v(x), thus vy # v, and the map q — v, is injective..

Let w be a discrete valuation on L that extends vy, let W = {z € L : w(x) > 0} be the
associated DVR, and let m = {z € L : w(x) > 0} be its maximal ideal. Since w|x = evy,
the discrete valuation w is nonnegative on A, so A C W. And W is integrally closed in its
fraction field L, since it is a DVR, so B C W. Let ¢ = mN B. Then q is prime (since m is),
and p =mNA=qgNA,so qlies over p. The ring W contains By and is properly contained
in L, which is the fraction field of By. But there are no intermediate rings between a DVR
and its fraction field (such a ring R would contain an element x € L with vq(z) < 0 and
also every x € L with vq(x) > 0, and this implies R = L), so W = By and w = vj. O
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