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8 Frobenius elements, the Artin map, completions

We continue to work in the AKLBG setup: A is a Dedekind domain, K is its fraction
field, L is a finite Galois extension of K with Galois group G := Gal(L/K), and B is the
integral closure of A in L (a Dedekind domain with fraction field L). We now add the
further assumption that the residue fields A/p (and therefore B/q) are finite. This holds
in the cases we are most interested in, where K is a global field (a finite extension of Q or
Fq(t)). It follows that B/q is then a Galois extension of A/p: finite fields are perfect, so
the extension is separable, and we proved last time that it is always normal (whether the
residue fields are finite or not); see Proposition 7.19.

In order to simplify the notation, when working with finite residue fields we may write
Fq := B/q and Fp := A/p. These are both finite fields of p-power order, where p is the
characteristic of Fp (and of Fq). There are two distinct possibilities, depending on the
characteristic of K. When K has characteristic 0 (for example, if K is a number field), its
characteristic differs from the characteristic of the residue fields, which may vary with p
but is necessarily nonzero because A/p is finite; this is referred to as a mixed characteristic
setting. When K has positive characteristic p, the residue fields will necessarily have the
same characteristic (the ring homomorphism A → A/p must send 1 to 1, and if p · 1 = 0
in A ⊆ K, then the same holds in A/p), this is an equal characteristic setting.

8.1 Frobenius elements

Recall that for each nonzero prime q of B lying above a prime p of A, the decomposition
group Dq ⊆ G is the stabilizer of q under the action of G on {q|p}, and Corollary 7.21 gives
us the exact sequence

π
1 −→ Iq −→ D

q

q −→ Gal(Fq/Fp) −→ 1.

The surjective homomorphism πq sends σ ∈ Dq ⊆ G = Gal(L/K) to an induced automor-
phism σ ∈ Gal(Fq/Fp) of Fq; the automorphism σ̄ is obtained by restricting σ to B and
noting that since σ(B) = B and σ(q) = q, we obtain an induced an automorphism σ̄ of
B/q = Fq that necessarily fixes the subfield A/p = Fp because σ fixes both A = B ∩K and
p = q ∩K; thus σ̄ ∈ Gal(Fq/Fp). The inertia group Iq is then defined as the kernel of πq.

If p (equivalently, q) is unramified, then ep = 1 and Iq is trivial. In this case we have an
isomorphism

πq : Dq −
∼→ Gal(Fq/Fp),

and since Fq/Fp is an extension of finite fields, the Galois group Gal(Fq/Fp) (and hence
Dq) is very easy to describe. It is the cyclic group of order fp = [Fq : Fp] generated by the
Frobenius automorphism

x 7→ x#Fp .

Note that the cardinality #Fp of the finite field Fp is a power pn of its characteristic p. If
K = Q and p = (p) is a prime of Z, then Fp = Z/pZ is the field with p elements.

Definition 8.1. Assume AKLBG with finite residue fields and q|p unramified. The inverse
image of the Frobenius automorphism of Gal(Fq/Fp) under πq : Dq −

∼→ Gal(Fq/Fp) is the
Frobenius element σq ∈ Dq ⊆ G, also called the Frobenius substitution of q.
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Proposition 8.2. Assume AKLBG with finite residue fields and q|p unramified. The
Frobenius element σq is the unique σ ∈ G such that for all x ∈ B we have

≡ #Fσ(x) x p (mod q).

Proof. It is clear that σq has this property, we just need to show uniqueness. Suppose
σ ∈ G has the desired property. We claim that σ ∈ Dq: if not then for some x ∈ q we
have σ(x) 6∈ q, and then σ(x) 6≡ F0 mod q and x# p ≡ 0 mod q, which is a contradiction. So
σ ∈ FDq, and since both πq(σ) and πq(σq) are the Frobenius automorphism x 7→ x# p , we
must have σ = σq, since πq is an isomorphism (because p is unramified).

Proposition 8.3. Assume AKLBG with finite residue fields and q|p unramified. For all
q′|p the Frobenius elements σq and σq′ are conjugate in G.

Proof. G acts transitively on {q|p}, so pick τ ∈ G such that q′ = τ(q). For any x ∈ B,

Fσq(x) ≡ x# p mod q.

Applying τ to both sides and then replacing x with τ−1(x) yields

τ(σq(x)) ≡ τ x#Fp mod τ(q)

F(τσq)(x)

(
≡ τ(x)# p

)
mod q′

(τσq)(τ
−1(x)) ≡ Fτ(τ−1(x))# p mod q′

(τσqτ
−1)(x) ≡ x#Fp mod q′,

and the uniqueness given by Proposition 8.2 implies σq′ = τσqτ
−1.

Definition 8.4. Assume AKLBG with finite residue fields and q|p unramified. The con-
jugacy class in G of the Frobenius element σq is the Frobenius class of p, denoted Frobp.

It is common to abuse terminology and refer to Frobp as a Frobenius element σp ∈ G
representing its conjugacy class; there is no risk of confusion so long as we remember that σp
is only determined up to conjugacy (which usually governs all the properties we care about).
There is, however, one situation where this terminology is entirely correct. If G is abelian
then its conjugacy classes all contains just one element, in which we case we necessarily
have σq = σp for all q|p.

8.2 Artin symbols

There is another notation commonly used to denote Frobenius elements that includes the
field extension in the notation.

Definition 8.5. Assume AKLBG with finite residue fields. For each unramified prime q
of L we define the Artin symbol (

L/K
:=

q

)
σq.

Proposition 8.6. Assume AK(LBG with finite residue fields and q|p unramified. Then p
L/Ksplits completely if and only if =q

)
1.
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Proof. This follows directly from the definitions: if p splits completely then epfp = 1 and
Dq = 〈σq〉 = {1}. Conversely, if Dq = 〈σq〉 = {1} then epfp = 1 and p splits completely.

We will see later in the course that the extension L/K is completely determined by the
set of primes p that split completely in L. Thus in some sense the Artin symbol captures
the essential structure of L/K.

Proposition 8.7. Assume AKLBG with finite residue fields and let q|p be unramified. Let
E be an intermediate field between K and L, and let qE = q ∩ E. Then(

L/E

q

)
=

(
L/K [

q

) Fq :
E

Fp]

and if E/K is Galois then
(
E/K
qE

)
is the restriction of

(
L/K to E.q

Proof. For the first claim, note that #F )[F= (#F q : pE
F ]

)
qE p . The second claim follows from

the commutativity of the lower right square in the commutative diagram of Proposition 7.23:
the Frobenius automorphism x 7→ x#Fp of Gal(FqE/Fp) is just the restriction of the Frobe-
nius automorphism x 7→ x#Fp of Gal(Fq/Fp).

L/KWhen L/K is abelian, the Artin symbol
(

q

)
takes the same value for all q|p and

we may instead write
(
L/K symp

)
. In this setting we now view the Artin bol as a function

mapping unramified primes p to Frobenius elements σp ∈ G. We wish to extend this map to
a multiplicative homomorphism from the ideal group IA to the Galois group G = Gal(L/K),
but ramified primes q|p cause problems: the homomorphism πq : Dq → Gal(Fq/Fp) is not a
bijection when p is ramified (it has nontrivial kernel Iq of order eq = ep).

For any set S of primes of A, let ISA denote the subgroup of IA generated by the primes
of A that do not lie in S.

Definition 8.8. Let A be a Dedekind domain with finite residue fields. Let L be a finite
abelian extension of K = FracA, and let S be the set of primes of A that ramify in L. The
Artin map is the homomorphism(

L/K

·

)
: ISA → Gal(L/K)

m∏
i=1

peii 7→
m∏
i=1

(
L/K e

pi

)
i

.

Remark 8.9. We will prove shortly that the set S of ramified primes is always finite, but
the definition makes sense in any case.

One of the main results of class field theory is that the Artin map is surjective (this is
part of what is known as Artin reciprocity). This is a deep theorem that we are not yet
ready to prove, but we can verify that it holds in some simple examples.

Example 8.10 (Quadratic fields). Let K = Q and L = Q(
√
d) for some square-free integer

d 6= 1. Then Gal(L/K) has order 2 and is certainly abelian. As you proved on the problem
sets, the only ramified primes p = (p) of A = Z are those that divide the discriminant{

d if d ≡ 1 mod 4,
D = disc(L/K) =

4d if d 6≡ 1 mod 4.
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If we identify Gal(L/K) with the multiplicative group {±1}, then(
L/K

p

)
=

(
Q(
√
d)/Q

(p)

)
=

(
D

p

)
= ±1,

where (D ) is the Kronecker symbol. For odd primes pp 6 | D we have

(
D p,

p

)
D

=

{
+1 if is a nonzero square modulo

−1 if D is not a square modulo p,

and for p = 2 not dividing D (in which case D = d ≡ 1 mod 4) we have(
D d

2

)
mo

=

{
+1 if D ≡ 1 8,

−1 if D ≡ 5 mod 8.

The cyclotomic extensions Q(ζn)/Q provide another interesting example that you will
have an opportunity to explore on Problem Set 4.

8.3 Localizing a field

In order to make further progress in our understanding of finite extensions L/K of global
fields, and in particular, to understand the primes p of K that ramify in L, we want to
introduce a new tool that allows us to “localize” fields. Fields have no nontrivial prime ideals
(they are Dedekind domains of dimension zero), so we can’t localize them in a nontrivial
way as we would a Dedekind domain of dimension one. But there is an analogous operation:
by taking the completion of a global field K with respect to one of its absolute values we
can obtain a local field, a term we will define shortly.

For the benefit of those who have not seen this construction before, we first review some
background material on completions, topological rings, and inverse limits; those familiar
with this material may wish to skip ahead to Section 8.4

8.3.1 Completions

Definition 8.11. Let K be a field with absolute value | |. A sequence (xn) of elements of K
converges (to the limit x) if there is an x ∈ K such that for every ε > 0 there is an N ∈ Z>0

such that |xn − x| < ε for all n ≥ N ; the limit x is necessarily unique. A sequence (xn) is
Cauchy if for every ε > 0 there is an N ∈ Z>0 such that |xn − xm| ≤ ε for all m,n ≥ N .

Every convergent sequence is also a Cauchy sequence, but the converse need not hold.
The field K is complete (with respect to | |) if every Cauchy sequence converges. A subring
R of K is complete if every Cauchy sequence in R converges to an element of R.

Which sequences converge and which are Cauchy depends very much on the absolute
value | | that we use, and as we have seen in the case of Q, a field may have infinitely
many inequivalent absolute values. Equivalent absolute values necessarily agree on which
sequences are convergent and which are Cauchy, so if a field is complete with respect to a
given absolute value it is also complete with respect to every equivalent absolute value.
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Definition 8.12. Let K be a field with absolute value | |. Two Cauchy sequences (xn), (yn)
are equivalent if |xn − yn| → 0 as n→∞. The completion of K (with respect to | |) is the

ˆfield K whose elements are equivalence classes of Cauchy sequences with the operations

[(xn)] + [(yn)] = [(xn + yn)] and [(xn)][(yn)] = [(xnyn)]

(one may verify that these satisfy the field axioms with 0 = [(0, 0, · · · )] and 1 = [(1, 1, . . . )]).
ˆThe field K is canonically embedded in its completion K via the map x 7→ x̂ = [(x, x, . . .)]

ˆand we thus view K as an extension of K. We extend the absolute value | | ˆto K by
defining ∣

[(xn)]
∣

= lim xn
n→∞

| |,

and note that if | | arises from a discrete valuation v on K, then there is a corresponding
ˆdiscrete valuation on K defined by

∣
v([(x

∣
n)]) = lim v(xn) ∈ Z that restricts to v on K (so

ˆthe discrete valuation on K extends v with index 1).

We record the following proposition whose proof is a straightforward exercise.

ˆProposition 8.13. Let K be the completion of a field K with absolute value
ˆ

| |. The
field K is complete, and it satisfies the following universal property: every embedding of K

ˆinto a complete field L can be extended to an embedding of K into L. Up to a canonical
ˆisomorphism, K is the unique field with this property.

Proof. Exercise.

ˆThe proposition implies that the completion of K is (isomorphic to) itself (apply the
ˆ ˆuniversal property of the completion of K to the embedding K → K); in general, completing

a field that is already complete has no effect. In particular, the completion of a field with
respect the trivial absolute value is itself: under the trivial absolute value the only sequences
that are Cauchy are those that are eventually constant, and these all clearly converge.

8.3.2 Topological fields with an absolute value

If K is a field with an absolute value | |, then it has a natural topology as a metric space
under the distance metric d(x, y) = |x − y| induced by the absolute value. If we define an
open ball to be a set of the form

B<r(x) := {y ∈ K : |x− y| < r},

(of radius r > 0 with center x > 0), then the open balls form a basis for the topology on K.
As with all metric spaces, this topology is Hausdorff, and we note that the closed ball

B≤r(x) := {y ∈ K : |x− y| ≤ r}

is a closed set. The trivial absolute value induces the discrete topology, since every open
ball of radius r < 1 consists of a single point.

When the absolute value | | is nonarchimedean the topology it induces has some features
that may be counterintuitive to the uninitiated. In particular, every open ball is already
closed, so the closure of B<r(x) is not B≤r(x) unless these two sets are already equal. The
latter can definitely happen – the map | | : K → R≥0 is in general not surjective, and will
even be discrete when | | corresponds to a discrete valuation. This means that is entirely
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possible to have B<r(x) = B<s(x) for r 6= s; indeed this must occur uncountably often if | |
arises from a discrete valuation.

The reader may wish to verify that the following hold in any metric space defined by a
nonarchimedean absolute value:

1. Every point in an open ball is a center, that is, B<r(y) = B<r(x) for all y ∈ B<r(x).

2. Any pair of open balls are either disjoint or concentric (have a common center).

3. Every open ball is closed and every closed ball is open.

4. The space is totally disconnected : every pair of distinct points lie in disjoint open
neighborhoods whose union is the whole space.

The field operations of addition and multiplication are both continuous with respect to
this topology as functions from K ×K → K (where K ×K is endowed with the product
topology). For addition this follows from the triangle inequality, and for multiplication and
inversion it follows from the fact that absolute values are multiplicative. The continuity of
addition and multiplication makes K into a topological ring, and the map K× → K× given
by x 7→ x−1 is also continuous (where K× is given the subspace topology), which makes K
a topological field. We can also view K and K× as topological groups under addition and
multiplication, respectively.1

For any topological space X, the continuity of a map f : X ×X → X implies that for
every fixed x ∈ X the maps X → X defined by y 7→ f(x, y) and y 7→ f(y, x) are continuous,
since each is the composition f ◦ φ of f with the continuous map φ : X → X ×X defined
by y 7→ (x, y) and y 7→ (y, x), respectively. For an additive topological group G this means
that every translation by h map g 7→ g + h is a homeomorphism, since it is continuous and
has a continuous inverse (translation by −h); in particular, translates of open sets are open
and translates of closed sets are closed. A consequence of this is that in order to understand
the topology of a topological group, it generally suffices to focus on neighborhoods of the
identity; any base of open neighborhoods about the identity determines the entire topology.
It also means that any topological property of a subgroup (such as being open, closed, or
compact) applies to all of its cosets.

Proposition 8.14. Let K be a field with absolute values | |1 and | |2. The induced topologies
on K coincide if and only if | |1 and | |2 are equivalent.

Proof. Only the trivial absolute value induces the discrete topology, so we assume | |1 and
| |2 are nontrivial. The field K must then be infinite, and if | |1 and | |2 are inequivalent we
can use weak approximation (Theorem 3.26) to construct a sequence that converges in one
topology but not the other. On the other hand, if | |1 and | |2 are equivalent, say | |2 = | |α1 ,
then every open ball B<r(x) in the topology induced by | |1 is also an open ball B<rα(x) in
the topology induced by | |2; thus the topologies are the same.

ˆIf K is the completion of K with respect to | | ˆ, then K is also a topological field with the
ˆtopology induced by | |, and the subspace topology on K ⊆ K is the same as the topology

ˆon K induced by | | ˆ. By construction, K is dense in K; indeed, K is precisely the set of limit
points of K. More generally, every open ball B<r(x) in K is dense in the corresponding

ˆ ˆopen ball B<r(x) in K, and these two sets have the same closure in K.

1For a topological group the inversion map G → G must be continuous; for a topological ring this
automatically holds for its additive group because multiplication by −1 is continuous.
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8.3.3 Inverse limits

Inverse limits are a general construction that can be applied in any category with products,
although we will only be concerned with inverse limits in familiar concrete categories such as
groups, rings, and topological spaces. Recall that a concrete category is one whose objects
can be defined as sets (more formally, it is a category that admits a faithful functor to the
category of sets), which allows us to speak of the elements of an object in the category.

Definition 8.15. A directed set is a set I with a relation “≤” that is reflexive (i ≤ i),
anti-symmetric (i ≤ j ≤ i ⇒ i = j), and transitive (i ≤ j ≤ k ⇒ i ≤ k), in which every
finite subset has an upper bound (in particular, I is non-empty).

Definition 8.16. An inverse system (projective system) in a category is a family of objects
{Xi : i ∈ I} indexed by a directed set I and a family of morphisms {fij : Xi ← Xj : i ≤ j}
(note the direction) such that each fii is the identity and fik = fij ◦ fjk for all i ≤ j ≤ k.2

Definition 8.17. Let (Xi, fij) be an inverse system in a concrete category with products.
The inverse limit (or projective limit) of (Xi, fij) is the object

X = limXi := x←−

{
∈
∏

Xi : xi = fij(xj) for all i ≤ j
i∈I

}
⊆
∏

Xi

i∈I

(whenever suc∏h an object X exists in the category). The restrictions πi : X → Xi of the
projections Xi → Xi satisfy πi = fij ◦ πj for i ≤ j.

The object X = limX←− i has the universal property that if Y is another object with
morphisms ψi : Y → Xi that satisfy ψi = fij ◦ψj for i ≤ j, then there is a unique morphism
Y → X for which all of the diagrams

Y

X

Xi Xj

ψi ψj
∃!

πi πj

fij

commute (this universal property defines an inverse limit in any category with products).

As with other categorical constructions satisfying (or defined by) universal properties,
uniqueness is guaranteed, but existence is not. However, in all the categories that we shall
consider, inverse limits exist.

8.4 Valuation rings in complete fields

We now want to specialize to absolute values derived from a discrete valuation v : K× � Z.
If we pick a positive real number c < 1 and define |x| v

v := c (x) for x ∈ K× and |0|v = 0
then we obtain a nontrivial nonarchimedean absolute value | |v. Different choices of c yield
equivalent absolute values and thus do not change the induced topology or the completion

2Some (but not all) authors reserve the term projective system for cases where the fij are epimorphisms.
This distinction is not relevant to us, as our inverse systems will all use epimorphisms (surjections, in fact).
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K̂ of K with respect to | |v. We will see later that there is a natural choice for c when the
residue field k of the valuation ring of K is finite (one takes c = 1/#k).

It follows from our discussion that the valuation ring

Â := {x ∈ K̂ : v(x) ≥ 0} = {x ∈ K̂ : |x|v ≤ 1}

ˆ ˆis a closed (and therefore open) ball in K, and it is equal to the closure in K of the valuation
ˆring A of K. We now give another characterization of A as an inverse limit.

Proposition 8.18. Let K be a field with absolute value | |v induced by a discrete valuation v,
let A be the valuation ring of K, and let π be a uniformizer. The valuation ring of the
completion of K with respect to | | ˆ

v is a complete DVR A with uniformizer π, and we have
an isomorphism of topological rings

A
Â ' lim

n
←
→∞
− .

πnA

ˆIt is clear that A is a complete DVR with uniformizer π: it is complete because it is
ˆclosed and therefore contains all its limit points in the complete field K, it is a DVR with

ˆuniformizer π because v extends to a discrete valuation on A with v(π) = 1.
Before proving the main part of the proposition, let us check that we understand the

topology of the inverse limit lim A/πnA. The valuation ring A of K is a closed ball B←−n ≤1(0)
(hence an open set) in the nonarchimedean metric space K, and this also applies to each
of the sets πnA (they are each closed balls of radius cn about 0). This implies that each
quotient A/πnA has the discrete topology, since the inverse image of any point under the
quotient map is a∏coset of the open subgroup πnA. The inverse limit is a subspace of the
infinite product nA/π

nA, whose open subsets project onto A/πnA for all but finitely
many factors (by definition of the product topology). It follows that the open subsets U of
the inverse limit are each the full inverse image (under the canonical projection maps given
by the inverse limit construction) of a subset of A/πmA for some m. If we consider the
case of a singleton set {x̄} in A/πmA and choose a representative x ∈ A, taking the image
of the coset x+ πmA = B cm(x) in each A/πnA gives the inverse image of x̄≤ ∈ A/πmA in
limA/πnA under the projection map.←−

We can alternatively describe the topology on lim A/πnA in terms of an absolute
n

value: for x = (xn) lim A/πnA, let v(x) be the least
n

←−
n 0 for which xn = 0, and define

|x| = cv(x)
∈

; the image
←
of
−

the coset x+πm
≥ 6

v A in limA/πnA is then just a closed ball B cm(x)
as above. If we embed A in limA/πnA in the ob

←− ≤
vious way (x 7→ (x,¯ x,¯ x,¯ . . .)), the absolute

values and subspace topology
←−

agree.

ˆProof. The ring A is complete and contains A. For each n > 0 we define a ring homomor-
ˆphism φn : A→ A/(πn) as follows: for each â = [(ai)] let φn(â) be the limit of the eventually

constant sequence (ai) of images of ai in A/(πn). We thus obtain an infinite sequence of
ˆsurjective maps φn : A → A/πnA that are compatible in that for all n

ˆ m
≥ m > 0 and all

a ∈ A the image of φn(a) in A/π A is φm(a). So we have a surjective ring homomorphism
ˆφ : A→ limA/πnA. Now note that←−

ˆkerφ =
⋂

πnA = {0}, (1)
n≥1

so φ is injective and therefore an isomorphism. To show that φ is also a homeomorphism,
it suffices to note that if x+ πmA is a coset of πmA in A and U is the corresponding open
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set n ˆ ˆin limA/π A, then φ−1(U) is the closure of x+ πmA in A, which is the coset x+ πmA,

an open
←−

ˆsubset in A (as explained in the discussion above, every open set in the inverse
limit corresponds to a finite union of cosets x+πmA for some m). Conversely φ maps open
cosets x+ πmÂ to open sets in limA/πnA.←−
Remark 8.19. Given any ring R with an ideal I, one can define the I-adic completion

ˆof R as the inverse limit of topological rings R := lim R/In, where each R/In is given the
n

discrete topology. Proposition 8.18 shows that when
←−

R is a DVR with maximal ideal m,
taking the completion of R with respect to the absolute value | |m is the same thing as taking
the m-adic completion. This is not true in general. In particular, the m-adic completion of
a (not necessarily discrete) valuation ring R with respect to its maximal ideal m need not
be complete (either in the sense of Definition 8.11 or in the sense of being isomorphic to its
m-adic completion). The key issue that arises is that the kernel in (1) need not be trivial;
indeed, if m2 = m (which can happen) it certainly won’t be. This problem does not occur
for valuation rings that are noetherian, but these are necessarily DVRs.

Example 8.20. Let K = Q and let v = vp be the p-adic valuation for some prime p and let
|x|p := p−vp(x) denote the corresponding absolute value. The completion of Q with respect
to | |p is the field Qp of p-adic numbers. The valuation ring of Q corresponding to vp is the
local ring Z(p). Taking π = p as our uniformizer, we get

Ẑ
Z )

(p) '
(p

lim
n
←
→∞
− pnZ(p)

' lim←−
n→∞

Z
= ,

n
Z

Z p
p

the ring of p-adic integers.

Example 8.21. Let K = Fq(t) be the rational function field over a finite field Fq and let
v = vt be the t-adic valuation and let |x|t := q−vt(x) be the corresponding absolute value.
with uniformizer π = t The completion of Fq(t) with respect to | |t is isomorphic to the
field Fq((t)) of Laurent series over Fq. The valuation ring of Fq(t) with respect to vt is the
local ring Fq[t](t) consisting of rational functions whose denominators have nonzero constant
term. Taking π = t as our uniformizer, we get

F
F̂q[t](t) '

q[t](t)
lim
n
←
→∞
− tnFq[t](t)

' lim←−
n→∞

Fq[t]
t

t
' [[ ]]

n
Fq ,

t Fq[ ]

where Fq[[t]] denotes the power series ring over Fq.

Example 8.22. The isomorphism Zp ' limZ/pnZ gives us a canonical way to represent
elements of Zp: we can write a ∈ Zp as a sequence

←−
(an) with an+1 ≡ an mod pn, where each

an ∈ Z/pnZ is uniquely represented by an integer in [0, pn − 1]. In Z7, for example:

2 = (2, 2, 2, 2, 2, . . .)

2002 = (0, 42, 287, 2002, 2002, . . .)

−2 = (5, 47, 341, 2399, 16805, . . .)

2−1 = (4, 25, 172, 1201, 8404, . . .)

√
2 =

{
(3, 10, 108, 2166, 4567 . . .)

(4, 39, 235, 235, 12240 . . .)

5
√

2 = (4, 46, 95, 1124, 15530, . . .)
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While this representation is canonical, it is also redundant. The value of an constrains
the value of a to just p possible values among the pn+1 n

n+1 elements of Z/p +1Z, namely,
those that are congruent to a n

n modulo p . We can always write an+1 = an + pnbn for some
bn ∈ [0, p− 1], namely, bn = (a n

n+1 − an)/p .

Definition 8.23. Let a = (an) be a p-adic integer with each an uniquely represented by an
integer in ∈ [0, pn − 1]. The sequence (b0, b1, b2, . . .) with b0 = a1 and bn = (a n

n+1 − an)/p
is called the p-adic expansion of a.

Proposition 8.24. Every element of Zp has a unique p-adic expansion and every sequence
(b0, b1, b2, . . .) of integers in [0, p− 1] is the p-adic expansion of an element of Zp.

Proof. This follows immediately from the definition: we can recover (an) from its p-adic
expansion (b0, b1, b2, . . .) via a1 = a0 and an+1 = an + pbn for all n ≥ 1.

Thus we have a bijection between Zp and the set of all sequences of integers in [0, p− 1]
indexed by the nonnegative integers.

Example 8.25. We have the following p-adic expansion in Z7:

2 = (2, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

2002 = (0, 6, 5, 5, 0, 0, 0, 0, 0, 0, . . .)

−2 = (5, 6, 6, 6, 6, 6, 6, 6, 6, 6, . . .)

2−1 = (4, 3, 3, 3, 3, 3, 3, 3, 3, 3, . . .)

5−1 = (3, 1, 4, 5, 2, 1, 4, 5, 2, 1, . . .)

√
{

(3, 1, 2, 6, 1, 2, 1, 2, 4, 6 . . .)
2 =

(4, 5, 4, 0, 5, 4, 5, 4, 2, 0 . . .)
√
5

2 = (4, 6, 1, 3, 6, 4, 3, 5, 4, 6 . . .)

You can easily recreate these examples (and many more) in Sage. To create the ring of
7-adic integers, use Zp(7). By default Sage uses 20 digits of p-adic precision, but you can
change this to n digits using Zp(p,n).

Performing arithmetic in Zp using p-adic expansions is straight-forward. One computes
a sum of p-adic expansions (b0, b1, . . .) + (c0, c1, . . .) by adding digits mod p and carrying
to the right (don’t forget to carry!). Multiplication corresponds to computing products of
formal power series in p, e.g. (

∑
bnp

n) (
∑
cnp

n), and can be performed by hand (or in Sage)
using the standard schoolbook algorithm for multiplying integers represented in base 10,
except now one works in base p. For more background on p-adic numbers, see [1, 2, 3, 4].
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