18.785 Number theory I Fall 2015
Lecture #9 10/08/2015

9 Local fields and extensions of complete DVRs

9.1 Local fields

Definition 9.1. A local field is a field K with a nontrivial absolute value that is locally
compact under the induced topology.

Recall that a topological space is locally compact if every point has a compact neighbor-
hood.L By the induced topology we mean the topology given by the metric d(z,y) = |z —y],
where | | is the absolute value on K. A metric space is locally compact if and only if every
point lies in a compact closed ball. Our first goal for this lecture is to give a precise charac-
terization of local fields which shows that they are precisely the fields we get by completing
a global field.

As in the previous lecture we use the following notation. The open ball of radius r € R+
about a point x in a metric space is denoted B, (z), and the closed ball is denoted B<,(x).
In any metric space, open balls are open sets and closed balls are closed sets, but remember
that the closure of an open ball is not necessarily a closed ball (in a nonarchimedean metric
space every open ball is already closed).

Lemma 9.2. Let K be a field with a nontrivial absolute value | |. Then K is a local field
if and only if every (equivalently, any) closed ball in K is compact.

Proof. Suppose K is a local field. The point 0 € K lies in a compact neighborhood that
contains some compact closed ball B<4(0). Pick ¢ € K* with |¢] > 1 (this is possible
because | | is nontrivial). The map = +— cz is continuous and | | is multiplicative, so
B<|jns(0) is compact for every n € Z~o. We thus have compact balls about 0 of arbitrarily
large radii, implying that every closed ball B<,(0) is a closed subset of a compact set, hence
compact. The translation map = — z + z is continuous, so every closed ball B<,(z) is
compact. This proves the forward implication, and the reverse implication is immediate.
For the parenthetical, note that the argument above applies to any compact closed ball. [

Corollary 9.3. Let K be a local field with absolute value | |. Then K is complete.

Proof. Suppose not. Then there is a Cauchy sequence (z,) in K that converges to a limit
z € K — K. Pick N € Zsg so that |z, — x| < 1/2 for all n > N (here we are using
the extension of | | to K), and consider the set S := B<i(zy) C k, which is compact by
Lemma 9.2. The Cauchy sequence (zy,)p>n in S must converge to a limit in S C K, since
S is comEct, and this limit must be z ¢ K, a contradiction. ]

Proposition 9.4. Let K be a field with discrete valuation v, valuation ring A, and uni-
formizer w. Then K is a local field if and only if K is complete and the residue field
k:=A/mA is finite.

Proof. Let us fix an absolute value |z|, := ¢*®) induced by v (with 0 < ¢ < 1). Suppose K
is a local field. Then K is complete, by Corollary 9.3. The valuation ring

A={zre K:v(x) >0} ={r e K :|z|, <1} = B<1(0)

!There are a variety of other definitions of locally compact that are used, but they all imply this one.
When X is Hausdorff (as it always will be for us) these alternative definitions are all equivalent to ours.
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is a closed ball, hence compact, by Lemma 9.2. Each coset z + 1A of mA is an open ball
B.i(z), since y € x+7A if and only if |z —y|, < ||, = ¢ < 1. Two cosets z+7A and y+71A
are either equal or disjoint, so we can cover A with disjoint open balls B<1(z) = z + 7A.
This disjoint open cover must be finite, since A is compact, so A/rA = k is finite.

Now suppose that K is complete and that k = A/7 A is finite. Then A = A is complete.
Proposition 8.18 gives an isomorphism of topological rings

A
A~ lim —

Each quotient A/7™A is finite, since A/mA is finite, and therefore compact; it follows that
the inverse limit, and therefore A, is compact; see [1, §1.9.6, Prop. 8]. Thus K contains a
compact closed ball B<1(0) = A and is therefore locally compact, by Lemma 9.2. O

Corollary 9.5. Let L be a global field with a nontrivial absolute value | |,. The completion
L, of L with respect to | |, is a local field.

Proof. If | |, is archimedean then L is a finite extension of Q, and the completion of L with
respect to | |, is a finite extension of R (the completion of Q with respect to its archimedean
absolute value), therefore L, is isomorphic to R or C, both of which are local fields.

We now assume that | |, is nonarchimedean and let v: L — Z U {oco} denote the cor-
responding discrete valuation. We have already seen that global fields have finite residue
fields, but let us spell out the details. The global field L is an extension of K = Q or
K =T,(t). The restriction of v to K is a discrete valuation of K, and there is an associated
prime p = {z € K : v(z) > 1} of A = Ok; for both K = Q and K = () the residue field
A/p is finite (for K = Q it is Z/pZ for some prime p and for K = Fy(t) it is Fg[t]/(f) for
some irreducible f € F,[t]). By Theorem 5.11, the valuation v is of the form v, for some
prime q|p of B = Or, and v, extends v, with finite index eq; in particular, the residue field
B/q is also finite.

If we now consider the completion L, with valuation ring B,, we can take any uniformizer
m for ¢ C B C B, as a uniformizer for B, (the valuation on L, extends the valuation on L

with index 1). We have
B By By By

qg By 7By 7B,

which shows that B,/mB, is finite, since B/q is finite. Thus L, is a complete field with
a nontrivial absolute value and finite residue field, and therefore a local field, by Proposi-
tion 9.4. 0

In order to classify all local fields we require the following result from topology.

Proposition 9.6. A locally compact topological vector space over a nondiscrete locally com-
pact field has finite dimension.

Proof. See [6, Prop. 4-13]. O

Theorem 9.7. Let L be a local field. If L is archimedean then it is isomorphic to R or C,
and otherwise L is isomorphic to a finite extension of Q, or Fy((t)) for some prime p.

Proof. Let L be a local field with nontrivial absolute value | |; then L is complete, by
Corollary 9.3. If char(L) = 0, then the prime field of L is Q, and L contains the completion
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of Q with respect to | |, by the universal property of completions. By Ostrowski’s theorem
(see Problem Set 1), L contains a subfield K isomorphic to @, for some prime p, or to R.

If char(k) = p > 0 then the prime field of L is [F,,, and L must contain a transcendental
element ¢, since no algebraic extension of I, has a nontrivial absolute value: in an algebraic
extension L of F),, every nonzero o € L* has some finite order n, and this implies |a| =1
because o = 1 implies |@"| = |a|™ = 1 and therefore || = 1, because the only nth root
of 1in R>¢ is 1. Thus L contains the completion of F' = [F,,(t) with respect to | |, and every
completion of () is isomorphic to Fy((¢)) for some ¢ a power of p, each of which is a finite
extension of F,((¢)). So in this case L contains a subfield K isomorphic to F,((%)).

If K is archimedean then Lemma 9.2 implies that K = R is a local field because every
closed ball in R is compact, and if K is nonarchimedean then Proposition 9.4 implies that
K is alocal field, since @, and F,((t)) are both complete and have finite residue fields. Thus
K is a local field and therefore locally compact, and it is nondiscrete because its absolute
value is nontrivial; Proposition 9.6 then implies that L has finite degree over K. If K is
archimedean then K = R, and the only finite extensions of R are R and C (every finite
extension is algebraic and C = R). Otherwise L is a finite extension of Q, or F,((¢)). O

9.2 Hensel’s Lemma

Definition 9.8. Let R be a (commutative) ring, and let f(x) = Z;‘i:o fizt € R[] be a
polynomial. The (formal) derivative f' of f is the polynomial f’(z) := 2?21 ifiz*~1 € R[z].

Note that the canonical ring homomorphism Z — R defined by 1 — 1 allows us to
view the integers i as elements of R (the map Z — R will be injective only when R has

characteristic zero, but it is well defined in any case). It is easy to verify that the formal
derivative satisfies the following identities:

(f+9)=f+4d,
(fg)' =19+ g
(fog) =(f o9y
When the characteristic of R is positive, we may have deg f’ < deg f — 1. For example, if R

has characteristic p > 0 and g(x) = f(2P) for some f € R[x], then ¢’ = f'(zP)paP~1 =0
(conversely, one can show that ¢’ = 0 implies g(z) = f(zP) for some f € R[x]).

Lemma 9.9. Let R be a ring, let f = Z?:o fixt € R[z] be a polynomial, and let a € R.
Then f(z) = f(a) + f'(a)(x — a) + g(z)(x — a)? for a unique g € R[x].
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Proof. Without loss of generality, we assume d > 2 (let f; = 0 for i > deg f). We have

f(z) = fla+ (x—a))
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so we can take g(z) = 3.4, f; Z;;% (;) a/(x —a)=277 € Rlz]. O

Remark 9.10. The lemma can be viewed as giving the first two terms of a formal Taylor
expansion of f(x) about a. Note that the binomial coefficients (;) are integers, hence well
defined elements of R under the canonical homomorphism Z — R, even if j! is divisible by
the characteristic of R. In the usual Taylor expansion

© 1(0)(q |
fa) =3 W oy
=0

7

used in characteristic zero, if f is a polynomial then f()(a) is necessarily a multiple of !,
so f®(a)/i! is actually a well defined element of R.

Corollary 9.11. Let R be a ring, f € R[z], and a € R. Then f(a) = f'(a) = 0 if and only
if a is (at least) a double root of f, that is, f(x) = (x — a)%g(x) for some g € R|x].

Definition 9.12. Let f € R[z] be a polynomial over a ring R and let a € R. If f(a) =0
and f'(a) # 0 then a is a simple root of f.

If R is a ring and [ is an ideal, by a lift of an element of R/I, we mean a preimage
under the quotient map R — R/I. We now state the (apparently) weakest form of what is
known as Hensel’s Lemma.

Lemma 9.13 (Hensel’s Lemma I). Let A be a complete DVR with mazimal ideal p and
residue field k := A/p. Suppose f € Alx] is a monic polynomial whose reduction to k[x] has
a simple root v € k. Then r can be lifted to a root of f in A.

Proof. We work in the quotient field K of A. Let ag be any lift of r to A; the element ag
is not necessarily a root of f, but it is a root modulo p. We will show that ag is the first
term of a Cauchy sequence (a,,), where each a, is a root of f modulo p*. In terms of
the absolute value | - | := ¢%() (for some 0 < ¢ < 1) on K, we have |f(a,)| < ¢*" rapidly
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converging to 0. The assumption that 7 is a simple root means that |f’(agp)| = 1, and we
have € := | f(ag)/f (ap)?| < c < 1.

Our proof only requires € < 1, so it actually works in many cases where r is not a simple
root (see Lemma 9.14 below); we also don’t need f to be monic. For each n > 0 we define

ani1 = an — f(an)/f'(an).
We will prove by induction on n that

(a) |an| <1 (so an € A);

(b) |an —agl < e <1 (so a, = aj; mod p, equivalently, a, is a lift of r);

(c) |f'(an)] = |f"(a0)] # 0 (so ap41 is well defined);

(d) |f(an)| < €"|f'(a0)? (so |f(ay)| and therefore f(a,) converges rapidly to 0).

The base case n = 0 is clear. We now assume (a), (b), (c), (d) for n and prove them for
n+ 1:

(@) lants — an| = [f(an)/f'(an)] < €"[f'(a0)?|/|f"(a0)] = €| f'(ao)| <
y

therefore |ap+1| = |ant1 — an + an| < max(|an+1 — anl, lan|) < 1 (b

¢ (by (c),(d)),
(a))-

(b) |ani1 — ao| < max(|ani1 — anl,|an — ao|) < max(e?”, €) = € (as above and using (b)).

(c¢) Applying Lemma 9.9 to f'(x) at a,, and substituting a,4+1 for x yields

/ — (o) — f'(a f(an) a flan) ?
Flanin) = 7o) = £ gyt o (L0

where f”(a,) € A and o = g(an+1) € A for some g € Alx] (so |f"(an)], |a] < 1). We
have |f(an)/f (an)| = |f(an)|/|f (a0)| < €¥"|f'(ao)|, by (d), so the absolute values of
the last two terms on the RHS are strictly smaller than first |f/(a,)| = |f'(ao)], thus

|f'(an+1)| = [f'(an)| = | f'(a0)| # 0.
(d) Applying Lemma 9.9 to f(z) and substituting a,; for z yields

flow = o~ e g+ (F3) =5 (J523)

where 5 = h(ap+1) for some h € Alx]. We have |5]| < 1, so (d) gives

[fans1)| < 1f(an)/ f'(an)* = [ f(an)?/1f (a0)* < | (a0) .

2n+l

We have |ap4+1 — ap| < €2 — 0 as n — oo, and for a nonarchimedean absolute value

this implies (a,) is Cauchy. Thus a := lim,_, a, € A, since A is complete. We have
fa) =lim, o0 f(an) =0, s0 a is a root of f, and |a — ap| = lim, 00 |an — ap| < 1, s0 a is
a lift of r = ag mod p. O

We now record the stronger form of Hensel’s lemma that we actually proved above.

Lemma 9.14 (Hensel’s Lemma II). Let A be a complete DVR. Let f € Alx], and suppose
aog € A satisfies

|f(ao)| < |f'(a0)|?
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(in particular, f'(a1) #0), and for n > 0 define

Qp+1 ‘= Ap — f(an)/f/(an)

The sequence (ay,) is well-defined and converges to the unique root a € A of f for which

la—ao| < €:=|f(ao)l/|f(ao) .

Moreover, | f(an)| < €| f'(ao)|? for all n > 0.

We should note the similarity between Lemma 9.14 and Newton’s method for finding
(or more closely approximating) a root of a polynomial given an initial approximation.
Like Newton’s method, the recurrence in Lemma 9.14 converges quadratically, meaning
that we double the number of p-adic digits in our approximation with each iteration. But
Lemma 9.14 is even better than Newton’s method, for two reasons: (1) if the residue field
is finite, finding an initial approximation is very easy, and (2) once we have an initial
approximation with € < 1, convergence is guaranteed.

Remark 9.15. The hypothesis in Lemmas 9.13 and 9.14 that A is a complete DVR is not
necessary, the proof generalizes to any complete local ring. But even completeness is not
strictly necessary. A local ring A in which Lemma 9.13 holds without the hypothesis that
A is a complete DVR is called a henselian ring. One can show that Lemma 9.14 necessarily
also holds in any henselian ring, as do many other forms of “Hensel’s Lemma”, including
Lemma 9.17 below. In general, any lemma that holds for a local ring if and only if it is a
henselian ring may be called ”Hensel’s Lemma”, and there are at least a dozen candidates,
see [7, Tag 04GE], for example. One can define the henselization of a noetherian local ring R
as the minimal extension of a ring that is henselian (as usual, it is minimal (and unique) in
the sense of satisfying a universal property); in many cases this turns out to be the subring
of the completion R consisting of elements that are algebraic over R. The henselization
of R is often much smaller than its completion (e.g. finite over R in cases where R is not),
and can serve as a substitute for the completion in algebraic settings.

Example 9.16. Let A = Z5 and f(z) = 2? — 6 € Zs[z]. Then f(z) = 22 — 1 € Fs[z] has
r =1 as a simple root. By Lemma 9.13 there is a unique a € Zj5 such that a? — 6 = 0 and
a =1 mod 5. We could also have chosen r = —1, which would give another distinct root of
f(z), which must be —a. Thus Zs contains two distinct square roots of 6.

Now let A = Zy and f(z) = 22 — 17. Then f(x) = 22 — 1 = (z — 1)? has no simple roots
(note f' = 0). But if we let ag = 1, then f(ag) = —16 and |f(ag)| = 1/16, while f’(ag) = 2
and |f’(ag)] = 1/2. We thus have |f(ao| < |f'(ao)* and can apply Lemma 9.14 to get a
square root of 17 in Zs.

There is a another version of Hensel’s Lemma we need (which is considered by some to
be the “canonical” one). Recall that polynomial over a ring is primitive if its coefficients
generate the unit ideal (over a DVR this just means that at least one coefficient is a unit).

Lemma 9.17 (Hensel’s lemma III). Let A be a complete DVR with mazimal ideal p and
residue field k, let F € Alz] be a primitive polynomial with image f in klx], and suppose
f = gh for some coprime g,h € k[x]. Then there exist polynomials G, H € Alz| for which
F =GH with G =gmod p and H = h mod p such that degG = degg..

Proof. See [5, Theorem I11.4.6]. O
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This form of Hensel’s lemma has the following useful corollary.

Lemma 9.18 (Hensel-Kiirschdk lemma). Let A be a complete DVR with fraction field K,
and let f € Klz] be an irreducible polynomial whose leading and constant coefficients lie
in A. Then f € Alx].

Proof. Let p = () be the maximal ideal of A, let k := A/p, and write f = Y"1 ; fiz" with
fn # 0. Let m = min{vy(f;)}. Suppose for the sake of contradiction that m < 0, and let
G:=nmf= Z?:o giz® € Alz] is a primitive irreducible polynomial with gg, g, € p and
gn # 0, since m < 0 and fo, f, € A. The reduction g of G to k[z] is divisible by some
maximal u := 2% with 0 < d < n to which the quotient v := g/x? € k[z] is coprime. It
follows from Lemma 9.17 that G = UV with U,V € A[z] and 0 < degU = degu < n, in
which case G is not irreducible, a contradiction. So m > 0 and therefore f € A[x]. O

Corollary 9.19. Let A be a complete DVR with fraction field K, and let L be a finite
extension of K. Then o € L is integral over A if and only if Ny /i (a) € A.

Proof. Let f = Z?:o fiz* € K[z] be the minimal polynomial of a. If « is integral over A
then f € A[z] (by Proposition 2.1) and N x(a) = f(0)° € A, where e = [L : K(b)], by
Proposition 4.45. Conversely, if Ny, k(o) = f(0)° € A, then f(0) € A, since f(0) € K is a
root of ¢ — N () € Afz] and A is integrally closed. Thus the constant coefficient of f
lies in A, as does its leading coefficient (it is monic), so f € Afz], by Lemma 9.18. O

9.3 Extensions of complete DVRs

We now return to our AK LB setup, where A is a Dedekind domain with fraction field K,
the field L is a finite separable extension of K, and B is the integral closure of A in L (which
makes B a Dedekind domain with fraction field L). Recall that be a prime of A, we mean
a nonzero prime ideal, equivalently, a maximal ideal, and similarly for B.

Theorem 9.20. Assume AKLB and that A is a complete DVR with mazimal ideal p.
Then there is a unique prime q of B lying above p.

Proof. Existence is clear (the factorization of pB in the Dedekind domain B is not trivial
because pB # B). To prove uniqueness we use the generalized form of Hensel’s lemma.
Suppose q1, q2|p with q; # gq2. Choose b € q; — q2 and consider the ring A[b] C B. Then
q1 N A[b] and go N A[b] are distinct primes of A[b] lying above p. So A[b]/pA[b] has at least
two nonzero prime ideals and is not a field.

Let F' € Alx] be the minimal polynomial of b over K and, and let f € k[a] be its
reduction to the residue field k£ := A/p. Then

klz] | Alz] _ A[b]

~

(f) — (o, F)  pADI

so the ring k[x]/(f) is not a field. Therefore f is not irreducible and we can write f = gh for
some nonconstant coprime g, h € k[z]. By the generalization of Hensel’s lemma, F' = GH
has a nontrivial factorization in A[z], which is a contradiction. O

Definition 9.21. Let K be a field with absolute value | | and let V' be a K-vector space.
A norm on V is a function || || : V' — Rx¢ such that

e |lv]| =0 if and only if v = 0.
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o [|[Av|| =\ ||v| forall A\ € K and v € V.
o |[v+w| < |jv]| + ||w] for all v,w € V.

Example 9.22. For any K-vector space V, the sup norm ||v|s := sup{|v;|} is a norm
onV.

As with absolute values, there is a notion of equivalence for norms on a vector space.

Definition 9.23. Let V' be a vector space over a field K with an absolute value. Two
norms || [|; and || ||2 are equivalent if there exist ¢, ca € R>¢ such that [|v][; < cz||v||2 and
lvll2 < erfv]|; for all v € V.

A norm || || on a vector space V induces a topology on V via the distance metric
d(v,w) := ||z — yl|. It is easy to see that equivalent norms induce the same topology: every
open ball about a point v € V defined with respect to one norm both contains and is
contained in an open ball defined with respect to another norm, and this makes it easy to
show that any set open in one of the induced topologies must also be open in the other. We
also have the following result which you may be familiar with from analysis.Z
Proposition 9.24. Let V be a finite-dimensional vector space over a complete field K with
an absolute value. All norms on V' are equivalent (and therefore induce the same topology).

Proof. See [2, Theorem 5.2.1]. O

Theorem 9.25. Let A be a complete DVR with mazimal ideal p, discrete valuation vy, and
absolute value |x|, := @) with 0 < ¢ < 1. Let L/K be a finite extension of degree n. Then
1
2] := [Neic (@)

is the unique absolute value on L extending | |y, and L is complete with respect to | |.

If L/K is separable, then the valuation ring {x € L : |x| < 1} is the integral closure B
of A in L and a complete DVR with unique mazimal ideal q|p. The discrete valuation vq
extends vy with index eq, and the absolute value | | on L coincides with the absolute value

a(z)

i’U
|z|q := cea ,
induced by vy.

Proof. Assuming for the moment that | | is in fact an absolute value (which is not obvious!),
it is clear that it extends | |, since for z € K we have

1/n 1/n
p

|z = [Npyx (@) = 2" = |2y,
and that | | is a norm on L as a K-vector space and thus unique up to equivalence by
Proposition 9.24. The fact that | |, is nontrivial means that |z|, # 1 for some z € K*,
and if |z|* = |z|, = || then we must have a = 1, so | | is the only absolute value in its

equivalence class that extends | |.

2We should note that the standard proof for real and complex vector spaces does not generalize to
arbitrary complete fields where closed and bounded does not necessarily imply compact (the standard proof
does work over any locally compact field, see [3, Theorem III.10] for example).
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We now show | | is an absolute value. Clearly |x| = 0 if and only if x = 0, and | | is
obviously multiplicative, the only difficulty is the triangle inequality. For this it is enough
to show that |z 4+ 1| < |z| + 1 whenever |z| < 1 (note that |y + z| = |z||ly/z + 1] and
ly| + |z] = |2|(ly/z| + 1), and we assume without loss of generality |y| < |z|). We have

2| <1 <= [Nyk@)py<1l <<= Npyg(@)€eA <+ z€b;

the first biconditional is immediate from the definition of | |, the second is immediate form
the definition of | |, and the third is Corollary 9.19. We now note that € B if and only
ifr+1€ B,soif |z| <1then |z + 1] <1< |z|+ 1, as desired. This argument also shows
that B is indeed the valuation ring {z € L : |z| < 1} of L as claimed.

We now assume L/K is separable and show that B, the integral closure of A in L, is
the valuation ring of L and a DVR. Every maximal ideal of B must lie above the unique
maximal ideal p of the DVR A, and Theorem 9.20 implies that B has a unique maximal
ideal g. Thus B is a local Dedekind domain, hence a DVR.

The valuation vy extends v, with index eq, by Theorem 5.11, so vq(z) = equp(x) for

all z € K*. We have 0 < c!/% < 1, so |z]q := (c!/®0)"(®) is an absolute value on L
induced by vy. To show that it is equal to | |, it suffices to show that it extends | |,
since we have already noted that | | is the unique absolute value on L with this property.
But this is clear: for any € K we have |z|; = ¢"1(®)/¢ = @) = |z|,. Tt follows that
B={zeL:vy(r)>0t={zreL:|z|g <1} ={xeL:|z|] <1} is the valuation ring of L
as claimed. O

Remark 9.26. The transitivity of Ny x in towers (Corollary 4.46) implies that we can
uniquely extend the absolute value on the fraction field K of a complete DVR to an algebraic
closure K. In fact, this is another form of Hensel’s lemma in the following sense: one can
show that a (not necessarily discrete) valuation ring A is Henselian if and only if the absolute
value on its fraction field K can be uniquely extended to K; see [5, Theorem 6.6].

Corollary 9.27. Assume AKLB and that A is a complete DVR with maximal ideal p and
let qlp. Then vy(x) = fiqvp(NL/K(a;)) for all z € L.

Remark 9.28. One can generalize the notion of a discrete valuation to a valuation which
is surjective homomorphism v: K* — I', where I' is a (totally) ordered abelian group and
v(z +y) <min(v(z),v(y)); we extend v to K by defining v(0) = oo, where oo is defined to
be strictly greater than any element of I'. In the case of a discrete valuation I' = Z, but
more generally one might take I' = Q, or any additive subgroup of R. In the AK LB setup
with A a complete DVR, one can then define a valuation v(z) = é”q (z) with image é
that restricts to the discrete valuation v, on K. The valuation v then extends to a valuation
on K with I' = Q. Some texts take this approach, but we will generally stick with discrete
valuations (so our absolute value on L restricts to K, but our discrete valuations on L do
not restrict to discrete valuations on K, they extend them with index eq). You will have an
opportunity to explore more general valuations on the problem sets.

Remark 9.29. In general one defines a valuation ring to be an integral domain A with
fraction field K such that for every x € K* either x € A or z7' € A (possibly both). One
can show that this implies the existence of a valuation v: K — I' U {oco} for some T'.
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