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18.786: Topics in Algebraic Number Theory (spring 2006) 
Problem Set 8, due Thursday, April 20 

This problem set uses heavily the fact that if K is the fraction field of a discrete valuation 
ring, then the absolute value on K extends uniquely to any finite extension of K; I should 
get to this by the end of class on the 13th. 

I marked a number of things “Optional” on here; to make up for it, please make sure 
to do at least one “Optional” part. (That is, the parts are all optional individually but not 
collectively.) 

1. Let Ui be the group of x ∈ Zp with x ≡ 1 (mod pi). Prove that if p = 2 and i ≥ 1, or 
p = 2 and i ≥ 2, then Ui is torsion­free. (Hint: use exp and log.) 

2. Determine the radius of convergence of the Taylor series for sin x over Qp. 

∞3. Prove that a formal power series n=0 anx
n and its formal derivative ∞ nanx

n−1 
n=1 

have the same radius of convergence over Qp. 

4.	 (a) Prove that the infinite extension Qp(p, p
1/p, p1/p2 

, . . . ) of Qp is not complete (under 
the unique extension of the p­adic absolute value). 

(b) Prove that the maximal unramified extension of Qp is not complete either. 

(c) Optional: prove that any infinite algebraic extension of Qp is not complete. 

5. (Optional, possibly tricky) Let Cp be the completion of an algebraic closure of Qp for 
the unique extension of the p­adic absolute value. Prove that Cp is again algebraically 
closed; the field Cp is loosely analogous to the usual complex numbers in ordinary 
analysis. 

6. In this exercise, you will check some of the basic properties of Newton polygons I 
noutlined in class. Let K be the fraction field of a DVR R. For P (x) = anx + a0 ∈+ · · ·

K[x] with an, a0 = 0, consider the set of points {(−i, v(ai)) : i = 0, . . . , n} in R2 . Their 
lower convex hull is the Newton polygon of P ; I’ll think of this polygon as consisting 
of n separate segments of horizontal width 1. 

(a) Let r1, . . . , rn be the roots of P in some finite extension K � of K. Assume that v 
extends uniquely to K � (we’ll prove this in class; note that v is normalized with 
respect to K, not K �). Prove that the slopes of the Newton polygon are precisely 
v(r1), . . . , v(rn). (Hint: sort the ri so that v(r1) ≤ · · · ≤ v(rn). Then check 
v(an−i/a + v(ri). Then check that equality holds if v(ri) < v(ri+1),n) ≥ v(r1) + · · ·

or if i = n.)


(b) Prove	 that the Newton polygon of PQ is obtained by “merging” the Newton 
polygons of P and Q: that is, the number of segments of the Newton polygon 
of PQ of any given slope is the sum of the corresponding numbers for P and Q. 
(Hint: this can be done directly, but use (a) instead.) 
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(c) As an example, compute the p­adic absolute values of the roots of x5 − 2x2 + 16 
in an algebraic closure of Q2. (I suspect SAGE can verify this by approximating 
the roots numerically.) 

7.	 (a) Let K be a finite unramified extension of Qp. Prove that there is a unique auto­
morphism of K over Qp lifting the p­power Frobenius map on the residue field. 
(Optional: state and prove a generalization to an arbitrary finite unramified ex­
tension between the fraction fields of two complete DVRs.) 

(b) (Optional) Exhibit examples to show that neither the existence nor the uniqueness 
in (a) need hold if K is ramified. (Hint: for the non­existence you must use a 
non­Galois extension.) 

8. Let R be a discrete valuation ring with fraction field K, and let |·| be a nonarchimedean 
absolute value on K with valuation ring R. Prove that for any extension L of K, not 
necessarily finite, there exists an extension of | · | to a nonarchimedean absolute value 
of L. (Hint: use Zorn’s lemma to reduce to considering a single algebraic extension, 
which we treated in class, and a single purely transcendental extension.) 

9. Here is a surprising application of the p­adic absolute value due to Paul Monsky. It is 
to prove that in Euclidean geometry, you cannot dissect a square into an odd number 
of triangles of equal area! 

(a) Apply the previous exercise to show that there exists a nonarchimedean absolute 
value | · |2 on R for which 2 2 < 1.| |

(b) Define the following subsets of R2: 

A = {(x, y) ∈ R2 : x 2 < 1, y 2 < 1}| | | |
B = {(x, y) ∈ R2 : x 2 ≥ 1, x y| | | |2 ≥ | |2}
C = {(x, y) ∈ R2 : y 2 ≥ 1, y 2 > x 2}.| | | | | |

Verify that A, B, C form a partition of R2 . 

(c) Prove that no line in R2 meets all of A, B, C. (Hint: note that A, B, C are all 
stable under translation by A, then reduce to the case where the line passes 
through the origin.) 

(d) Let	 R be the interior of a convex polygon of the plane, dissected into finitely 
many triangles. Suppose that the number of edges of R which ahave one vertex 
in A and one in B is odd. Prove that there is a triangle in the dissection with 
one vertex in each of A, B, C. (Hint: once you incorporate (c), this is a purely 
combinatorial parity argument.) 

(e) Prove that if T is a triangle with one vertex in each of A, B, C, and T has area 
K, then |K 2 > 1. (Hint: see (c).) |

(f) Deduce Monsky’s theorem by applying (d) to an appropriate unit square and then 
using (e). 
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