ALGEBRAIC NUMBER THEORY

LECTURE 11 NOTES

First we’ll prove the proposition from last time:

Proposition 1. Let A be a Dedekind domain with fraction field K. Let L/K
be a finite separable extension, and B the integral closure of A in L. Assume B
is monogenic over A, i.e. B = Ala] for some a € B. Then let f(X) € A[X]
be the minimal polynomial of o over K. Let p be a prime of A and let f be the
reduction of f mod y. If f factors as

fIX] = Pi(X) ... P (X)*
where Py, ..., P. € (A/p)[X] are irreducible and monic, then
pB =B . B

where B; = pB + P,-(oz)é?, the ramification index of B; is e;, and the residue
degree of B; is f; = deg P;.

Proof. Let P be an irreducible factor of f, let @ be a root of P (in the algebraic
closure of A = A/p), and let B be the prime of B which is the kernel of the map
Ala] — Ala]

(the right hand side is a field). It is clear that pB + P(«)B is contained in B.
Conversely, if g(a) € B, then g(al) = 0, so g = Ph for some h € A[X] since
P is the minimal polynomial of @ Then g — Ph € A[X] must actually have
coefficients in p, so g(a) € P(a)B + pB. So we do have B = pB + P(a)B. It’s
clear that get exactly all the primes in the factorization of p in this way, for this
construction gives a prime B of B lying above p, and conversely, if B lies above

p, then B/ is a field extension of A/p generated by the image of « in B/%B.

It’s clear that the residue degree [B/9B; : A/p] of B, is f; = dega; (over A)
= deg P;. Now let €/ be the ramification index of %B;, so that pB = B{' ... B,
Since f(a) =0 and f(X) — P (X)® ... P.(X) € pA[X], it follows that

Pi(a)® ... P.(a) € pB

But we also have B;" = (pb+ P;(a)B)* C pB + P;(«)* B for every i. Multi-
plying these gives
BB C (pB+ P(a)"B)...(pB+ P.(a)" B)

CpB+ P(a)" Py(a)® ... P.(a)®r
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—pB =B .. B

which implies ¢; > ¢} for each i. But we know that > e;f; = deg f = deg f =
[E : F] =) €. fi, which forces e; = €] for all i.
O

1. SECTION 5.3

If L/K is an extension of number fields, we define Dy to be the discriminant
ideal of Oy, over Og.

The main result of this section says that for a finite separable extension L/K,
where K = Frac(A) for a Dedekind domain A, and B the integral closure ofA
in L, a prime p of A ramifies in B iff it divides the discriminant Dp/4.

We can use this example to compute which primes which ramify in quadratic
or cyclotomic fields, in particular.

Ezample. If d = 2,3 mod 4 is squarefree, then the discriminant of Q(v/d) is 4d.
So the prime 2 ramifies in the quadratic field. We can check that (2) = (2, v/d)?
if d =2 mod 4 and 1(2) = (2,14 Vd)? if d = 3 mod 4.

The discriminants D which are equal to d if d = 1 mod 4 and squarefree and
4d if d = 2,3 mod 4 and squarefree, are called fundamental discriminants.

Example. For the cyclotomic field, Q((,-), the discriminant is a power of p. So the
only prime which ramifies is p, and p ramifies completely: (p) = (1 — ()@ Q.
This follows from using (1 — ¢}) = (1 — () as ideals whenever k is coprime to
p.

2. SECTION 5.4

Quadratic extensions are monogenic, so we can apply our proposition to figure
out how primes decompose.

(1) d=2,3 mod 4. Then o = V/d generates the ring of integers. Its minimal
polynomial is X? — d, whose discriminant is 4d. So p ramifies iff p|4d
(i.e. X% —d is a square mod p. Note that for p = 2, we either get X? or
X?+1=(X+1)? mod 2). Now if p doesn’t divide 4d, then p splits as
pip2 (with e(p;) =1, f(p;) = 1) iff X? —d mod p has two roots in F,, i.e.
iff d is a quadratic residue mod p. Otherwise p is inert (remains prime),
withe=1, f =2.

(2) d =1 mod 4. Then a = (14 +/d)/2 generates the ring of integers, and its
minimal polynomial is X? — X + (1 —d)/4, whose discriminant is d. So p
ramifies iff p|d. Otherwise, we calculate as follows: if p = 2 then p splits
iff (1 —d)/4=0mod 2 iff d =1 mod 8. If p is odd then the condition is
as before: p splits iff d is a quadratic residue mod p.



ALGEBRAIC NUMBER THEORY 3

3. EXTENSIONS OF LOCAL FIELDS

Let K be a nonarchimedean local field: for us, a finite extension of @Q,. Let
L/K be a finite extension (separable since K has characteristic 0). Let p = ()
be the prime ideal of 0 = Ok, where m = 7w is a uniformizer. Then there is
only one prime B above p, since L is a nonarchimedean local field too (unique
extension of the valuation), so Op is a DVR and has a unique nonzero prime ideal.
So pOr = B, where f =residue class degree of B satisfies ef =n = [L : K].
Now if e = 1, f = n we say the extension is unramified, and if e =n, f =1 we
say the extension is totally ramified.

Proposition 2. There is only one unramified extension of degree n of K.

Proof. Let k = Ok/p be the residue field of Of. It is a finite field F,, with
q a power of p (since if K is a finite extension of Q,, x is a finite extension
of Z,/pZ, = F,). Now if L/K is an unramified extension of degree n, we see
that [OL/B : Ok /p] = f =n. So OL/B = Fn, the unique extension of F, of
degree n. Now fix a generator @ of F over F, and let f € F,[X] be its minimal
polynomial. Then f has degree n and is separable, since the extension of finite
fields is separable (finite fields are perfect). Let f be a lift of f to Ox[X] and
choose it to be monic (and hence of degree n). Then by Hensel’s lemma applied
to Op, and its residue field, f has a root ain Op. This «, being of degree n, must
generate the field L over K. Therefore this L must be isomorphic to K[X]/(f).
Conversely, it is an easy check that K[X]/(f) is unramified of degree n = deg f.
Since the construction of f depends only on K and on n, this shows that L must
be unique once these are fixed. In other words, there is exactly one unramified
extension of K of every degree. O

Now let’s look at the totally ramified case. On the homework, you will show
that totally ramified extensions are given by specifying an Eisenstein polynomial

X"+ ap X"t ag

with 7|a; for all 4, and 72 fag; this is the minimal polynomial of a uniformizer of
Op.

Combining these, one can show that there are only finitely many extensions
of degree n of a nonarchimedean local field K. The proof uses the following
argument, which is a corollary of Krasner’s lemma (Problem 4 on Problem Set
4).
Let f,g € K[X]| be monic polynomials. Define |f| to be the maximum of
the absolute values of the coefficients of f. If | f| is bounded then the absolute
values of the roots of f are also bounded (for instance, by looking at the Newton
polygon). Now fix f, and suppose |f — g| is small. Then if 3 is any root of g, we
have that |f(8) —g(8)| = | f(5)] is small. So 5 must be close to a root of f, since
f(B) =T1(B — ;) where a; are the roots of f. As 3 comes close to say o = ay,
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its distance from the other roots of f approaches the distance of «; from ther
other roots, so it is bounded from below. We say that § belongs to a. Now if f is
irreducible and g is sufficiently close to f, then Krasner’s lemma applied to any
root 3 of g shows that a € K (), where « is the root of f to which 5 belongs.
But since deg g = deg f, we must have K («) = K(/3) and g is irreducible as well.
So this tells us that polynomials which are close enough to a given irreducible
polynomial f are also irreducible and generate the same extension.
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