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ALGEBRAIC NUMBER THEORY 

LECTURE 3 SUPPLEMENTARY NOTES 

Material covered: Sections 2.1 through 2.5 of textbook. 

1. Section 2.1 

Proof of Theorem 1, (b) (c): Once we have the system of equations, ⇒

(x I − C)y = 0· 

where C = (aij), we can multiply the matrix x I−C by its adjoint, which results ·
in the scalar matrix d I = (det(x I −C))I multiplying y to give the zero vector. · · 
This implies dyi = 0 for all i and then d = 0 as in the book. 

Example. Let K be a number field. Then any x ∈ K is algebraic over Q. It 
satisfies a unique monic polynomial equation of smallest degree 

x n + an−1x n−1 + + a1x + a0 = 0· · · 

with ai ∈ Q. If all the coefficients ai are integers, we say that x in an algebraic 
integer. The ring of algebraic integers of K is called OK . 

2Example. The algebraic number 
√

3 is an algebraic integer, since it satisfies x −
3 = 0. But (1 +

√
3)/2 is not an algebraic integer, since its minimal polynomial 

2is 2x − 2x − 1. On the other hand the Golden ratio (1 + 
√

5)/2 is an algebraic 
integer. Its minimal polynomial is x2 − x − 1. 

Proof of Proposition 3: Here is an alternate proof of the first part: if B is 
integral over A and A is a field, then B is a field. Let 0 =6 b ∈ B satisfy the 
following equation of minimal degree over A: 

bn + an−1b
n−1 + + a0 = 0· · · 

We can assume that a0 = 0 else we can factor out b and cancel it to get a lower 
degree, since B is an integral domain. Then we have 

b(bn−1 + + a1) = · · · −a0 

so that −a −1(bn−1 + + a1) is a multiplicative inverse for b.
0 · · · 
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2. Section 2.2 

Example 2.2 is a special case of the Gauss lemma: Every UFD (unique factor­
ization domain, or factorial ring, in Samuel’s terminology) is integrally closed. 
The proof is the same as in the book, word for word. 

3. Section 2.3 

Example. Here is an example where K ⊂ R, x ∈ R is integral over K but k[x] is 
not an integral domain (or equivalently a field, in this situation). 

Let R ⊂ M2(K) (the 2 × 2 matrices over K) be K[x], where 

0 1 
x = 

1 0 

֒Kand M2(K) as scalar matrices. The minimal polynomial of x is easily seen →
to be X2 − 1, which is not irreducible. Here K[x] is a direct sum of two copies 
of K, as an algebra over K. 

4. Section 2.4 

We say a field K is perfect if every algebraic extension of K is separable over 
K. In other words, any monic irreducible polynomial over K splits over K into 
a product of distinct monic linear factors. 

Example. Any field of characteristic 0, or any finite field, is perfect. 

Example. An example of a non-perfect field is K = Fp(T ). The polynomial 
Xp − T is irreducible over K, but over the extension K(T 1/p) = Fp(T

1/p), it 
splits as (X − T 1/p)p, so it has multiple roots. 

Theorem 1 (Theorem of primitive element). Let K be a perfect field, and L/K 
a finite extension. Then ∃x ∈ L such that L = K[x]. 

5. Section 2.5 

A number field is a finite extension of Q. Number fields are labelled by their 
degree: quadratic if they have degree 2 over Q, cubic, quartic, quintic and so 
on. If K is a number field, we let OK be the ring of integers of K, which is the 
integral closure of Z in K. 

Note that for quadratic fields, we see by the explicit description of OK that it 
is a free Z-module of rank [K : Q]. In fact this is true for any number field. A 
subring of OK of rank [K : Q] over Z is called an order. 
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6. GP example 

f = x^3 + 3*x + 1; 
F = bnfinit(f); 
charpoly(Mod(x^2,f)); 

The last command computes the characteristic polynomial of α2, where α is a 
root of f . 

a = sqrt(3) + sqrt(2) 
algdep(a,4) 

This command produces a best possible approximation to a minimal polynomial 
of the specified degree. To set the precision in gp, use 

default(realprecision,100); 
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