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ALGEBRAIC NUMBER THEORY 

LECTURE 7 NOTES 

Material covered: Local fields, Hensel’s lemma. 

Remark. The non-archimedean topology: Recall that if K is a field with a val­
uation | |, then it also is a metric space with d(x, y) = |x − y|. The topology 
has a basis of open neighborhoods given by B(x, ǫ) = {y ∈ K | |x − y| < ǫ}. If 
the valuation is nonarchimedean, then this metric space or topology is rather 
bizarre. For instance, the open balls don’t have a unique center: in fact, if we 
take any y ∈ B(x, ǫ), then y is a center of the ball as well, i.e. B(x, ǫ) = B(y, ǫ)! 
To see this, use the strong triangle inequality 

d(z, x) < ǫ and d(y, x) < ǫ ⇒ d(z, x) < ǫ 

so that B(x, ǫ) ⊂ B(y, ǫ) and similarly, B(y, ǫ) ⊂ B(x, ǫ). Note that the set 
D(x, ǫ) = {y ∈ K | |x−y| ≤ ǫ} is a closed set, but it is not necessarily the closure 
of B(x, ǫ) (see the next remark). 

Remark. If the norm is discrete as well as nonarchimedean, then things get even 
stranger. Suppose |x| = c−v(x) for some c > 1 and a normalized exponential 
valuation v. Then the set B(x, ǫ) can be identified with {y ∈ K | v(x − y) > 
− logc(ǫ)}. Since the valuation is discrete and integer-valued, it’s easy to see 
that v(x − y) > − logc(ǫ) is equivalent to v(x − y) ≥ ⌊− logc(ǫ) + 1⌋ = δ, 
say. Therefore B(x, ǫ) = D(x, δ) is closed. Hence K is disconnected, and the 
same argument shows that any subspace of K containing more than one point is 
disconected. In other words, K is totally disconnected. 

Proposition 1. Let K be a field with a discrete valuation v, and o its valuation 

ring, p the maximal ideal. Let K� be the completion of K with respect to v and 
ˆ p the valuation ring and maximal ideal of ˆ Then ˆ p ∼ o/p (and in fact, o, ˆ v. o/ˆ = 
ˆ pr ∼ o/pr for r ≥ 1). o/ˆ = 

Proof. We have a map o → ô → ô/p̂ and the kernel of this composition consists 
of all elements x of o which are in p, so those which have v̂ = v(x) ≥ 1. In 
other words, the kernel is p.
 o/ˆˆ→ p֒/oSo p and we just need to see that the

map is surjective. Let 0
 = 
because 1 ≥ limn→∞ |an| = |am| for m large enough, it follows that the sequence 
an eventually lies in o. Now choose N large enough such that v(an − aN ) ≥ 1 
for n ≥ N . Then x = aN + y where y = lim(an − aN ) lies in p̂, by definition. 

1 

x ∈ ô be the (limit of) the sequence {an} in K. Now
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Therefore ô = o + p̂ proving the surjectivity. A similar proof works for the more 
general statement. � 

Example. If we start with K = Q with its p-adic valuation vp(x) = power of p 
dividing x, then the completion is called the field of p-adic numbers Qp. Any 
nonzero element Qp can be written as an infinite convergent series pk(a0 + a1p + 
a2p

2 + . . . ), with k ∈ Z and a0, a1, · · · ∈ {0, 1, . . . , p − 1}. 

More generally, we have the following description. 

Proposition 2. Let R ⊂ o be a system of representatives for κ = o/p, which is 

usually taken to include 0 for convenience. Then every 0 6 x ∈ ˆ= K has a unique 
representation as a convergent series 

x = πm(a0 + a1π + a2π
2 + . . . ) 

where ai ∈ R, a0 6 0, m ∈= Z. 

Proof. Since π is also a uniformizer of the DVR ô, let x = πmu, where u ∈ ô ∗ . 
Since ô/p̂ ∼ o/p, the class u mod p̂ has a unique representative a0 ∈ R, a0 6= 0. = 
So u = a0 + πb1, with b1 ∈ ô. Assume by induction we have 

u = a0 + a1π + a2π
2 + · · · + an−1π

n−1 + πnbn 

with bn ∈ ô, and let an be the representative in R of the residue class of bn 

mod p̂ to continue. So we get 
� 

aiπ
i which is easily seen to be convergent and 

unique. � 

Remark. The valuation ring Zp of Qp can be thought of as the collection of all 
the Z/pnZ together. Any element of Zp determines a compatible collection of 
elements of Z/pnZ and vice versa. In formal terminology, Zp is the inverse limit 
of the Z/pnZ. Note that, for instance, every prime q =6 p is invertible in Zp; in 
fact, it is already invertible in the valuation ring of Q with respect to | |p. 

The completion K̂ of K with respect to the discrete valuation v is a complete 
metric space. We say that a field K is a complete discretely valued field (or CDVF 
for short) if it is complete with respect to the discrete valuation specificied. 

Exercise. Two valuations are equivalent iff they define the same topology on K. 

Example. In Qp, a basis of neighborhoods of 0 is given by pnZp, n ∈ Z. These 
get smaller as n increases. 

Lemma 1. Let K be a CDVF such that κ = o/p is finite. Then o is compact 
and K is locally compact. 

Proof. For a metric space, compactness is equivalent to sequential compactness. 
So let {an} be a sequence in o. Write 

an = an0 + an1π + an2π
2 + . . . 
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for every n, where ani are elements of a system of representatives R ⊂ o of κ, 
which is finite. Since the values taken by the sequence {an0}n≥q lie in a finite 

′ set R, some value must be taken infinitely often, say by some subsequence {an} 
′ ′ where an = af(n) for some increasing function n. Then looking at the values an1 

we refine further to a sequence {an
′′ } and so on. It’s clear that the sequence {an 

(n)
} 

will converge, and it is a subsequence of the original sequence. � 

Example. In particular, Zp is compact and Qp is locally compact. 

Definition 1. Let Kp be the completion of a number field K with respect to the 
nonarchimedean valuation vp corresponding to a prime p of the ring of integers 
OK . (Recall that vp(x) is the power of p dividing the principal fractional ideal 
(x) if 0 =6 x ∈ K.) These fields Kp are called nonarchimedean local fields. 
The archimedean local fields are R and C. 

Theorem 1 (Ostrowski). Let K be a field complete with respect to an archimedean 
valuation. Then K is isomorphic to R or C, and the valuation is equivalent to 
the usual archimedean valuation. 

We will omit the proof of this theorem (see, for instance, Neukirch pg. 125). 

Remark. Nonarchimedean local fields are always CDVFs. There are also some 
local fields in positive characteristic (namely the Laurent series Fq((t)) over a 
finite field), but we will not discuss them in this course. 

Example. There is no square root of −1 in Q, but there is a square root in Q5 

for instance, which we may see from 
� 

1 5 
�

1 � �
5
�2 

� 

(−1)1/2 = (4 − 5)1/2 = 2(1 − 5/4)1/2 = 2 1 − · + 2 · + . . . 
2 4 2 4 

which converges since |5| < 1 in Q5, and 2 is invertible. 

The following lemma is extremely important in the study of CDVFs. 

Theorem 2 (Hensel’s lemma). Let f(x) ∈ o[x] be a primitive polynomial, i.e. 
f(x) 6 0 mod p. Suppose that the reduction f(x) of f mod p factors as h(x)g(x),= 
into relatively prime polynomials g, h ∈ κ[x]. Then f(x) = g(x)h(x) for some 
polynomials g, h ∈ o[x] such that deg g = deg g and g(x) ≡ g(x) mod p, h(x) ≡ 
h(x) mod p. 

Proof. Let π be a uniformizer. Let deg f = d, deg g = m. Then deg h ≤ d − m 
(this is because the degree of f might be smaller than degree of f , if the highest 
coefficient is divisible by π. We inductively construct polynomials gn and hn of 
degrees m and at most d − m respectively, such that 

• gn+1 ≡ gn mod πn+1 

• hn+1 ≡ hn mod πn+1 
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• f ≡ gnhn mod πn+1 . 

Then it will follow that gn, hn converge to polynomials g, h with the required 
degree constraints and reductions mod p, such that f = gh. Now, g0 and h0 

can be taken to be lifts of g, h of the same degrees. Note that by assumption, 
ag0 + bh0 ≡ 1 mod p for some polynomials a, b ∈ o[x]. To do the inductive step, 
suppose we have already constructed g0, h0, . . . , gn, hn with the desired properties. 
Let gn+1 = gn + pnπn+1 , hn+1 = hn + qnπ

n+1 . The first two conditions are 
automatically satisfied, and the third condition for n + 1 becomes 

f − gnhn ≡ (gnqn + hnpn)πn+1 mod πn+2 

since the last term is π2n+2pnqn which is divisible by πn+2 . By the induction 
hypothesis, the LHS is divisible by πn+1 . Let rn = π−n−1(f − gnhn). Then 
cancelling πn+1, the third condition becomes 

rn ≡ gnqn + hnpn mod π ≡ g0qn + h0pn mod π. 

Now we recall that ag0 + bh0 ≡ 1 mod π, so that (arn)g0 + (brn)h0 ≡ rn mod 
π. At this point we would just like to set qn = arn and pn = brn, but the 
problem is that the degrees might become too large if we do that. So the final 
trick is the following: noting that the highest coefficient of g0 is a unit (because 
deg g0 = deg g), we can divide with remainder: 

brn = qg0 + pn 

where deg pn < degg0 = m. Then we have 

rn ≡ arng0 + brnh0 ≡ arng0 + (qg0 + pn)h0 = (arn + h0q)g0 + pnh0 mod π. 

Let qn be the polynomial obtained from arn + h0q by omitting all coefficients 
divisible by π. Then because 

g0qn + h0pn ≡ rn mod π 

and deg rn ≤ d (follows from induction hypothesis), deg h0pn ≤ (d − m) + (m − 
1) = d−1, and the fact that the highest coefficient of g0 is a unit, forces deg qn ≤ 
d − m. This completes the inductive step. � 

′ 
Corollary 1. Let f(x) ∈ o[x] be such that f(x) has a root α ∈ κ with f (α) 6 0.= 
Then f(x) has a root x0 ∈ o which reduces to α mod p. 

Example. If p 6 2 and x a mod p has a solution then a is a square in Zp.= 2 ≡ 

Example. The polynomial xp−1 − 1 ∈ Fp[x] has p − 1 distinct solutions. So all 
the (p − 1)’st roots of unity exist in Zp. 

Corollary 2. Let K be a CDVF. Then for every irreducible polynomial 

f(x) = a0 + a1x + · · · + anx n ∈ K[x] 
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is a L, and show thatL→֒Kwhich extends that on Ldefine a valuation on 

such that a0an = 0, we have that 

|f | := max{|a0|, |a1|, . . . , |an|} 

equals max(|a0|, |an|). In particular, if an = 1 and a0 ∈ o, then f ∈ o[x]. 

Proof. After multiplying by an element of K we may assume w.lo.g. that f ∈ o[x] 
and that |f | = 1, i.e. that one of a0, a1, . . . , an is a unit. Let ar be the first among 
the a0, a1, . . . , an such that |ar| = 1. Then 

f(x) ≡ x r(ar + ar+1x + . . . anx n−r) mod p. 

If max(|a0|, |an|) < 1 then 0 < r < n and so f would factor in o[x] by Hensel’s 
lemma, contradicting irreducibility. � 

Now let L/K be a finite (hence algebraic) extension of a CDVF K. Then we’ll 

CDVF with respect to it. 

Theorem 3. There is a unique extension of a discrete valuation | | of K to any 
nfinite extension L/K, and it is given by |α| = 
�

NL/K (α), where L/K has degree 
n. The field L is complete with respect to this valuation. 

Proof. Let O be the integral closure of o in L. We claim O = {α ∈ L |NL/K (α) ∈ 
o}. It’s clear that α ∈ O ⇒ NL/K (α) ∈ o, since o is integrally closed (it’s a PID). 

Conversely, let α ∈ L and NL/K (α) ∈ o. Let 

f(x) = x d + ad−1x d−1 + · · · + a0 ∈ K[x] 

mbe the minimal polynomial of α. Then NL/K (α) = ±a0 ∈ o for m = [L : K(α)], 
so a0 ∈ o as well. By the irreducibility of f(x), the lemma above implies f(x) ∈ 
o[x], so that α ∈ O. 

nNow for the function |α| = 
�

NL/K (α), it’s clear that α = 0 ⇔ |α| = 0 and 
|αβ| = |α||β|. To prove the stong triangle inequality |α + β| ≤ max(|α|, |β|), it’s 
enough after dividing by α or β to show 

|α| ≤ 1 → |α + 1| ≤ 1 

But |α| ≤ 1 is equivalent to α ∈ O which implies α+1 ∈ O which gives |α+1| ≤ 1, 
so this is true as well. It’s clear from NL/K (a) = an for a ∈ K that the valuation 
extends that of K. 

Uniqueness: suppose we have another valuation | | ′ extending that of K. Then 
let O, O ′ be the corresponding DVRs and B, B ′ the associated maximal ideals. 
We will show that the valuations are equivalent, so one is a power of the other. 
Since they agree on K, they are equal. 

Suppose α ∈ O\O ′ . Let 

f(x) = x d + ad−1x d−1 + · · · + a0 ∈ K[x] 
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be the minimal polynomial of α over K. Then ad−1, . . . , a0 ∈ o by the above. 
Also α 6∈ O ′ ⇒ v ′ (α) < 0 ⇒ α−1 ∈ B ′ . Then 

1 = −ad−1α
−1 · · · − a0(α

−1)d ∈ B ′ 

which is impossible. This shows that O ⊂ O ′ or in other words |x| ≤ 1 ⇒ |x| ′ ≤ 1. 
The reverse implication must also be true: otherwise if |x| ′ ≤ 1 and |x| > 1, then 
letting π ′ be a uniformizer for O ′ , we have that y = 1/(π ′ + π ′2xe) has |y| < 1 
for large enough e, but |y| ′ > 1. Therefore the valuations are equivalent. 

Finally, to show that L is complete, notice that L is a finite dimensional 
vector space over L. Now we use the standard fact that for any field complete 
with respect to an absolute value, any two norms on a finite dimensional vector 
space over it are equivalent, i.e. they define the same topology, or equivalently, 
each norm is bounded by a fixed positive multiple of the other. So the above 
norm on L must be equivalent (in the topological sense) to the max norm, which 
is defined as follows: let v1, . . . , vn be a basis of L over K. The max norm of an 
element x = 

� 
xivi (xi ∈ K), is just max{|x1|, . . . , |xn|}. Now it’s clear that L 

is complete with respect to the max norm, since for any Cauchy sequence, each 
of the coordinates will define Cauchy sequences in K, which comverge because 
K is complete. So L is complete with respect to the other norm as well. � 
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