
ALGEBRAIC NUMBER THEORY 

LECTURE 8 NOTES 

1. Section 4.1 

We say a set S ⊂ Rn is discrete if the topology induced on S is the discrete 
topology. Check that this is equivalent to the definition in the book (every 
compact subset K of Rn intersects S in a finite set). 

A lattice is a discrete subgroup Λ of Rn of rank n as a Z-module. 

Proof of Minkowski’s theorem. Translate all the parts of S to a fixed fundamen­
tal parallelopiped. Since the sum of volumes of the translates is larger than the 
volume of the fundamental domain, two of the portions must overlap. The dif­
ference of corresponding points in two overlapping portions gives a vector x − y 
in the lattice, for x, y ∈ S. � 

For a number field K of degree n = r1 + 2r2 over Q, it follows from dimQK = 
n = dimRRr1 that K ⊗Q R ∼ Rr1 × Cr2 , although non-canonically (there × Cr2 = 
are choices made in the canonical embedding!) 

We’ll see a version for tensoring with the non-archimedean completions of Q 
later. 

2. Section 4.3 

Example. Consider the field K = Q(α), where α is the unique real root of 
X3 − X − 1. We calculate that Z[α] has discriminant −23, which is square-
free. This implies that OK = Z[α], since otherwise the (absolute) discriminant 
of OK would be 23/N2 for some integer N > 1, and could not be an integer, 
which is impossible. 

Now let’s determine the class group. We have r1 = r2 = 1. By the proof of 
Theorem 2, we need only look at ideals a of norm Na ≤ 4 3! 

√
23 ≈ 1.357. Since 

π 27 
the norm is an integer, it must be 1. So a = OK which is principal. Therefore 
the class group is trivial and OK is a PID. 
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