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THE N-VALUE GAME OVER 2 AND JR 

YIDA GAO, ~!ATT R.EDMOND, ZAeR STEWARD 

ABSTRACT. The n-value game is an easily described mathematical ""'~ c.... "f"""'J. , 
diversion with dee under innin s in dyn~mical systems analysis( 

. amll1e the behavior of several variants of the n-value game, 
generalizing to arbitrary polygons1 unci mflQ'1£ seti Key results in­
c1ude~ guaranteed convergence of the 4-value game over the in­
tegers, ~cyclic behavior of the 3-value game, and the existence of 
infmitelyrany solut ions of infinite length in all real-valued games. 

~ , ', . Co.J1....(- d. '1"" +l-':'~ 7 J..lh..... ,l) 

1. INTRODUCTION 

The n-value game is a deterministic system based on a simple transi-
tion rule: from a polygon with labelled vertices, generate a new polygon 
by placing labelled vertices on the midpoints of its edges. We describe 
the n = 4 case, other polygons generalize natmally. To begin, draw 
a square and label its Yertices with numbers (a, b, e, d). At the mid-
point of each edge, write the absolute value of the difference between 
the edges' endpoints. Finally, connect these midpoints to form a new 
square. Repeat lUltil all vertices are zero, with the "length" of the game 
defined as the number of transitions required to reach the zero game. 
The tr (a, b, e, d) -+ (Ib - ai, Ie - bl, Id - el, la - dl) represents 
this rule. In this paper, we prove key properties of n-value games over 

1 eren sets . Section 2, authored by Vida Gao and I\Iatt Redmond, in-
vestigates the convergence and behavior of the {3, 4}-value games over 
2 , and relates the 4-value games over 2 to those over 1Ql. Section 3, 
authored by Matt Redmond, investigates the general case of an n-value 
game over JR, and demonstrates the existence of an innnite family of 
infinite-length solutions. Section 4, authored by Zach Steward, consid-
ers a combinatorial approach to counting the equivalence classes of the 
4-\'alue game over integers in [0, n - 1] for fixed n. Section 5, authored 
by I\Iatt Redmond and Zach Steward, presents some interesting em-
pirical results about the distribution of path lengths for 4-value games 
over integers in [0, n - 1]. 

Date: March 1, 2013.  
1  
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2, n-VALUE GAMES OVER Z 

2.1. The convergence of the 4-value game. In this section, we 
establish that all 4-value games over Z converge to (0, 0, 0, 0), We 

r accomplish tllis by demonstrating that each game eventually reduces 
to a state in which all of its entries are even, and that games which are 
constant multiples of each other have the same length, This naturally 
gives a bound on the maximum length of a game, given its starting 
state, lx ~oI.-(M- r-? ~ 

Lemma 2.1. Ifr E IR+ , (m, Tb , re, Td) has the sre length as (a, b, e, d), 

Proof Consider the entries after t steps of t¥e (m, rb, rc, Td) game,  
~ _ .' These entries are equal to T times the entri1 of the (a, b, c, d) game 

Iv;;. ~ lU:) after t steps by the linearity of subtraction, Suppose the length of  
.r:<\........,,..L, h . the (a, b, c, d) game is L, There must exist some non-zero entry n in  
... ~ ~L.. i<:tstep L - 1. Tllis implies that in the (m, Tb ,Te, Td) game, molD at  

Ct4-~NJ' ''' t- step L - 1, so the (m, Tb , TC, Td) ganle does not end after L - 1 steps,  
Finally, the (a, b, c, d) game ends on step L , with each entry equal to  f"'" +l<-i"" zero, so we must have T ' q = 0 for each entry q in the Lth step of the  

tL..w~ '.... (ra, Tb , TC, rd) game. Because l' # 0, q = 0 for all entries in the Lth step c.......,) .- ) of the (m, Tb, Te, Td) game, so these games have the same length, 0 
o-.eU...~ We introduce new notation: let gt be G3e vector correspondigg to the 
'r h~~ game 9 after transitioning for t steps, 
StlfU" i~ C~ ..J; 	Lemma 2.2 . For any given game g, at least one of {go , g1 , g2, g3, g4} 


has all even entries. A<:.h.>cr.~ I{crv~ iw S':;J j't l.v>? ~ . b... ( ..,I" c, ~) => 0 

Proof roof procedes by case analysis over various parities. Let e 


~) (("(, ~ ,._) ~G r · 'esent an even element; let a represent an odd element, It is handy 
to recall rules for subtraction: e - e = e, e - 0 = 0, a - e = 0, o~ e. 

There are six potential configurations (up to symmetry ove~\ for T ' ~" 2. .. 
the pari ties of the start ing game, 	 ( ' .-. 
(1) 9 = (e,e , e,e) 	 /> ~ 4 ~ 
(2) 9 = (e , e,e , o) 	 I I ~ ? 
(3) 9 = (e,e,o,o) 	 ~ ~k ~av~ ~ j rlj', ' 
(4) 9 = (e,o ,e, o) 	 -tojc...-,.r~~. 

(5) 9 = (e, o,o,o) 	 ..e~ l..w ~ ~ 'Jl 
(6) 9 = (0 , 0, 0, 0) ~ .........~ ~ in I <' 

Examining each case in turn: U 
(1) If all entries are even, 9 itself satisfies our condition, 
(2) 	After one step, gl = (e , e, 0 , 0), After two steps, g2 = (e, 0 , e, 0), 

After three steps, g3 = (0, 0, 0, 0), After four steps, g4 = (e, e, e, e) 
and we are done, 
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(3) gl = (e , 0, e, 0). g2 = (0,0,0,0). g3 = (e, e, e, e) . 
(4) gl = (0,0,0,0). g2 = (e, e, e, e). 
(5) gl = (0, e, e, 0). g2 = (0, e, 0, e) . g3 = (0,0,0,0). g4 = (e, e, e , e) . 
(6) gl = (e,e,e,e). 

Each case becomes (e, e, e, e) after at most four steps. o 
~~ ~ J'" r;; Theorem 2 .3. All 4-value games over Z converge to (0, 0, 0, 0) 

Ls6>k f., '~. 	 Proof From any stru·ting configuratio@ (aI, a2 , a3, a4), take several 
steps until the gam e reaches a state where all entries ru'e even. This 
will take at most four steps, by Lemma 2.2. The new configuration 
Geven can be \\'j'itten as (2b l , 2b2 , 2b3 , 2b4 ). By Lemma 2.1 , the length 
of Geven is exactly the same as the game (bl , b2, b3, b4). However, we are 
guamnteed that the maximum element in (b1, b2 , b3, b4) has decreased 
from the maximum element in (a1, a2, a3, a4). Proceed inductively, by 
stepping each new game until all entries are even (at most four steps 
each time), then factor out another 2. As the maximum element is 
construltly decreasing, each grune must terminate in (0, 0, 0,0) in a 
finite number of steps. 0 

~ L~I- l- Corollary 2.4. The path length L of a game (a, b, c, d) 'is bounded above 
C\..G~ i by 4ilog2(max(a, b, c, d))l 
';;I::.~~"y 	 2.2. The orbits of the 3-value game. In this section, we diverge 
~ k from the 4-value game and consider the 3-value ganle over Z . We 
j'1IM- prove that all non-trivial 3-value games cycle, rather than converging rt....t::e--k to (0,0,0). We accomplish this proof by examining the five cases which oa-"Cl... :2 , ~ encompass all possible 3-value ganles . 
..L fl...~ First , let us imagine the values in the tuple as points on a number 

-tt;....:. ij' it.,. line. For example, a struting trirulgle with (1 ,3,5) looks like this: 

-= 
~~ . . . 	 . 


4
A!-.st; " '~:r'" we 

I • ••Q;S I "'"~~ 
Col ~/C ,.Q.E f/J. 

FIGURE 1. A number line with points corresponding toL.:....... .  (1,3,5) game state. 
~ri. G-,\.,....j( 

/i)<.t'~ JtL 
~ ~,.,...j- Definition 2 .5 . Let mnge(G) be defined as the largest positive differ­

-/i..f- f--J ence between any two points in a 3-value game tuple: 


tL....t it..1- . mnge(G) = Ima;<:(gi) - min(gi) I 

9iEG 9iEG 

~9n~li~gng5n5n5.ng5n~~.~6g~~~g~~~5~~~~~'~'~~H®l~w.m~~@~~©~~~©~~~~~gx~~t~~Z=61 

~ a.4~~ 

mailto:9n~li~gng5n5n5.ng5n~~.~6g~~~g~~~5~~~~~'~'~~H�l~w.m~~@~~�~~~�~~~~~gx~~t~~Z=61
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D efinition 2.6. A non-trivial 3-value game is one in which the 
start state is not (x, x, x), whel'e x E Z. 

Theorem 2.7. All non-trivial 3-value games over Z cycle in (0, x, x) 
jOTm. 

Proof. The proof is by cases. Consider five possible cases for the non-
trhial 3-value game over Z: 
(1) 	One zero and two mm1bers of the same value (0, x, x) : this case 

enters a cycle that ret urns a permutation of (0, x, x) on every step. 

(0, x , x) O (10 - xf, Ix - xf, Ix - Of) = (x , 0, x) 

(x , 0, x)- > (Ix - 01, 10 - xl , Ix - xf) = (x, x , 0) 

(x , x, 0) - > (Ix - xl, Ix - Of, 10 - xf) = (0, x, x) 

(2) One zero and two numbers of different values (0, x, y): in this case, 
the range decreases by the positive difference of the two non-zero It 


6......k numbers. Without loss of generality, assume'/.J > x > 0: _________ .J4." reve.u T14> 

~ ..J~t'. 

~ 1- ~ (O , x , y) - > (10 - xl, Ix - yf, Iy - Of) = (x,y - x , y) ~~....+-~ 
r \(,j . /1 . O~)C.c:~? 

~ 	 l", -IM-..../<'\.)(./ 'i-I< Range of (O,x,y) = Iy - 01 = y; range of (x, Ix - yl,y) ty ly - ­
d (y - x)1 = x. In this case, the range decreases by y - x. 

(3) 	Two zeros and one non-zero number (0,0, x): this case only occurS) l\: " W to 
as a start state because two pairs of overlapping points are required ~~ 
to create two zeros and the 3-yalue game only has three points in _ r. I 
total. Range st~ the s,a:and the game enters case 1. o-<J J,-r ~ 

Vld\- ~ c-. ~ Jt.....t- .:t:;, 

(0,0, x)- > (0 - 0, 10 - xf, Ix - 0) = (0, x, x) f-.J:L;L;. "u . 

Range of (0, 0, x) = x; range of (0, x, x) = x 
(4) 	Three non-zero values in which two values are the same (x , y , y): 

The range stays the same and the game transitions to case 1. 

(x, y, y) - > (Ix - yl ,0, Iy - xl) 

Range ~y, y) = Ix - yl; range of (Ix - yl ,0, Iy - xf) = Ix - yl 
(5) 	Three ~e non-zero values (x, y, z): 

Without loss of generality, z > y > x. In this case, the range 
decreases by y - x or z - y, and the new range is z - y or y - x . ~~. 

(x , y , z) ---t (lx-yl,ly-zl,lz-xl) = (y - x,z - y ,z xl UngmaI 
rooge is _ y If z- y > y-x, new range = z-x - (y - x) = z - y , 
otherwise new range = z - x - (z - y) = y - x . The difference in 
range is either z - x - (z - y) = y - x or z - x - (y - x) = z - y . 

'BW ~k ~-~ cVC--j ~ ~tt-d-~: 
"Y(, 	~ L~ ~o k \ 4 -~t-e)1 . 

1l-. ' E) I X o-g.l,o-¥-D=o "! ~o1?X " Xoo Ll oWX 
. . _ ls lu:.. shU OX ') 	

J 
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For all non-trivial 3-value games, the range is guaranteed to decrease 
at each step until the game transitions to a (x, y, y) (case 4) or (0, 0, x) 
(case 3) state, which both lead to the cycling case 1 state. Thus, all 
non-trivial 3-value games over Z will reduce to case 1 and cycle. D 

2.3. The equivalence of games over Z to games over IQ. In this 
section we use Lel~~heorem 2.3, ru1d T heorem 2.6 to extrapo-
late the behavior 0~~!.::z1ue games over Z to behavior over IQ. 

Theorem 2.8 . All 4-value games over IQ converge to (0,0, 0,0). 

Proof. Let 
nl n2 n3 n4)

( d, ' d2 ' d3 ' d4 

represent our 4-value game over IQ. By defining a common denomina-
tor, D = d1d2d3d4, we can rewri te this as the equivalent grune 

n1 d2d3d4 7?2dld.1d4 n3d,d2d4 n4 d1d2d3) 
( D ' D ' D ' D . 

In Lemma 2.1 we showed that for any r E lR+ the two games (a ,b, e, d) 
ru1d (Ta. ,Tb, re, rd) have the same length. In the game above we have 
l ' = i which if factored out gives us a 4-value game over Z. In Theorem 
2.3 \I'e showed that every 4-value grun e over Z will converge to (0, 0, 0,0) 
and ~'e conclude that by reducing the game over IQ to one O\'er Zany 
4-value game over IQ will converge to (0,0,0,0). D 

Theorem 2.9 . All non-trivial 3-value games over'lQ cycle in (O,x,x) 
form, 

Proof. By deduction from Lemma 2.1 , we can conclude that a non-
tri \'ial 3-value game (n"iS d3 , '''~d3 , n3~d2) over IQ where D = d,d2d3 
reduces to a non-trivial 3-value game (n ,d2d3, n2dld3, n3dld2) over Z , 
whicl1 by Theorem 2.6 cycles in the (0, x, x) form, D 

3. n-VALUE GAMES OVER lR 

In this section, we consider the properties of the n-valued game over 
the real numbers. Several questions come to mind; do all real-valued 
games terminate? If not, does there exist a real-valued game that 
demonstrates cyclic behavior? If not, does there exist a real-valued 
game of infinite length? We answer the first question (no) and third 
question (yes) by proving the existence of infinitely many games with 
infinite length . We accomplish this by representing a single step of 
the game as a lineru' operator (with a restricted domain), then demon-
strating the existence of an infinite grune for each value of n . Finally, 

'S' , ~~ ,,\eN ~lJ; u..,p. C--<t~< ~l a t" .......... d.e~ ~~~) 
. ( - , .( .. - ~ k ' . 

.e.~",- ~.::t;V ~ '-'"""-' il(N. 
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we show that every infinite length game can be modified to generate 
infinitely many games of infinite length. 

3.1. Linearizing the n-value game. Given an n-value game on JR, 
G = (aJ , a2, . . . an), we produce each step by the transformation rule 
Gt -t Gt+! = (al> a2,· .. an) -t (la2 - al l, la3 - a21,·. ·Ial - ani)· Due 
to the absolute value, this transformation is not representable as a 
linear operator; however, if we restrict the domain of the input to the 
set of vectors (ml,m2, ... m n ) such that ml < m2 < .. . < m n , we 
can eliminate the use of the absolute value function. Gt -t Gt+! = 
(al ,a2, ... an) -t (a2 - al,a3 - a2 ,. · . an - aI). Notice that the last 
element has had its operands reyersed. With this "increasing order" 
constraint , we can write G t -t G t+1 as aJl n x n lineaJ· operator Tn: 

- 1 1 0 0 0 
0 - 1 1 0 0 
a a - 1 1 a 

Tn = 

0 a - 1 1 
-1 a 0 1 

3.2. Identifying an infinite length game for each n . To compute 
the next element in the ganle, left-multiply by T". As an example, 
consider t he effectf of T4 on G = (1,5,7,11): 

[~1 ~1 J1 ~l [~l [ ~ l ~~c.Q ~ 
-1 a a 1 11 

= 
10 f UM.Ji:v-.., ~ 

As this example shows, it is not necess~tn~~ut  
-pIn \:4M (I. . Gt+1 maintains the "increasing ord ." . ~In general, increasing  
<l.-'" - I. 1""'4<1 inputs are not gUaJ·anteed to increasing outputs. For the special  
~~ case, however, of an increasing eigenvector v of Tn , we are guaranteed 

G 1._. -I{ thanhe IllYaI iant will hold: the output v ' is guaranteed to be a scalaJ· , 
If y..",..-...G:. multiple of v because Tv = AV = v '. A scalar ~ultiple of an increasing ) J,v..}- u..:. I"...:c.. 
)e---~ ) sequence is an increasing sequence. L IcJS 1'-<.0. , .:r"'::l .e.o~ 
(f-.~. 'Fc:4 ..e..VU> If our intial game v is a real non-zero eigem;;ctor of Tn, then we are ..u..I<·e 
~ gUaJ·anteed that TnV = AV f O. In general, for all k, T~v = AkV f 0, 
TG . so real , increasing eigenvectors of Tn are guaranteed to generate infinite 
~ L ~ ... ;. _ l~ngth games. 

« *I I ©1? In 17 ~H 
'8~~~« ~~R8<J~~i)Q~a•• : ~ . ~G••• J .S5 '. f5 · Y · X~ . ~u ••v . ~ox~ ~~y : ~y~xy. ~Y 
~~I t 
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To demonstrate that there e . sts an infini te length ganle for 
we must demonstrate the exis nce of a real , increasing, nonzero 
vector/value pair vn , .\n for I n. 

all n , 
eigen- \" 

{' V~ 
-..., 0 
I' 

3.3. Establishing a "g a positive real e igenvalue, Le\-
- 1 - .\ 1 0 0 0 ,0 - 1 -.\ 1 0 0 

0 0 - 1 - .\ 1 0 ,\}ee,fS" = T" - ,\1" = 

0 0 - 1 -.\ 1 ~~(
- 1 0 0 1 -.\ 

Expanding det (S,,) by cofactors along the bottom row, we see 

2- 8j",,-I,.A.f~ckt? 
?~..h. ~ det(Sn) = - 1(-1)1+" 

~ ~ ",,;.Ie t. :t-
(EO( 5" F- 'ik.-t' ~  

1 0 0 0 
- 1 - ,\ 1 0 0 

o - 1 - ,\ 1 0 + 

0 0 - 1 - .\ 1 
- 1 -.\ 1 0 0 

0 - 1 - .\ 1 0(1 - '\)(_I)"+n 
0 

0 0 - 1 - .\ 
The determinant in the first term reduces to 1, and the determinant 

in the second term reduces to (- 1 - .\ )n-1 The characteristic polyno- -n: ~ 
mial ofT" is t~ (_ 1)2+"+(1_ ,\)(_1)2"(_1_ ,\)"-: 8!l ExpanGiHg;- fY""" '. t.u..r _ 
we have CL.,.,o-" • ~ '" IS 

(_ I )2+n + (-1 - .\)n- l - .\(-1- .\r-1 = 0 ® 

(_1)2+"+~ (n ~ 1) (_I),,-1-k( _.\)k_.\ ~ (n ~ 1) (- l r-1-k(-w = 0 
k=O k=O 

L C(~~ )_(:~rJ 
~ t4-.. tw. 

1~L It 
~ , We examine the pattern of signs on thls polynomial to determine 

~~~fi;<;~:r- the number of positive roots. In each case, .\ = 0 is a root, so the ge;: r coefficient on the constant term is zero. 

6..--~ ~ ~ ~n, (C \ -( ) I ' 
i~SD~Q5D5DD.ll~gn5n5n5n5n5n5D5n5n5D5n5n5Dl5nn5n*5s 6J~ 'v5~6©~x=~-ool~J©lX~~I~gLbx6 
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When n is even , the sign pattern is (+, ... , +, 0, -, ... , -, 0) . 
'-...--' '-...--' 

~ ~ - 1  

When n is odd, the sign pattern is ~,~, O) .  

n~l 1\2"1 
Each case has exactly one change of sign, so there exists exactly one 

positive real root for each characteristic polynomial by Descartes' Rule 
of Sig11s [1]. Let this eigenvalue be An\yve claim that 0 < An < 1 for all 
n - to see this , consider the methoa-tor finding a bound on the largest 
positive real root of a polynomial via synthetic division: dividing a 
polynomial P(x) by (x - k) will resul t in a polynomial with all positive 
coefficients if k is an upper bound for the positive roots [2, Eqn. 15]. 
Di\'iding each of the characteristic polynomials by (An - 1) (easily done 
syn1bolicallyon a CAS) yields polynomials with all positive coefficients 
for a:n n, which demonstrates that 1 is always the least integral upper 
bound. 

3.4. Identifying an increasing eigenvector. To determine the cor-
responding eigenvector Vn = (aI, a2, . .. an) , we solve (Tn - An1n)vn = O. 
Tllis produces the following set of equations: 

(-I - An)al+a2=0 (1 + A,.)al = a2 
(-1-An)a2+ a3=0 (1 + An)a2 = a3 

or 
(- 1 - An)a"-l + an = 0 (1 + An)an-l = an 

(1 - An)an - al = 0 (1 - An)an = al 

Arbitrarily, let an = 1. This forces a, = (1 - An), which forces 
a2 = (1 - An)(l + An) . In general, for 1 :s; i < n we have ai = 
(1 - An) (1 + An)i-1 An eigenvector that corresponds to the eigem'alue 
An is thus 

(1 - An) 

(1 - An)(l + An) 

(1 - An)(l + An)2 


(1 - An)(1 + An)n- 2 

1 


We verify thatlthis eigenvector is in increasing order for all n - given 
o< An < 1, we ~ave (1 - An)(1 + An)k < (1 - An)(1 + An)k+1 because 
(1+Anl < (1+ An)k+1 and (1-An) > 0 when 0 < An < 1. Additionally, 
we have (1 - An)(1 + An)n- 2 < 1 for all An < 1 because (1 - A,,)(l + 
An)"- I = 1. 

AlA ") I..> ([, C\ ; >-.. ) ( l+~~) "-2.. . C (-r:A" ) ~  
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Empirically, for the n = 4 case, we have A4 "" 0.839287, so the eigen-
vector which generates a game of infinite length is approximately G = 
(0.160713, 0.295598, 0.543689, 1). The progression of this game after t 
timesteps results in G, = (0.839287)'· (0.160713, 0.295598, 0.543689, 1). 

3.5. Generating infinitely many solutions of infinite length. 
Our choice of an = 1 was arbitrary - the eigenvector we obtained was 
parametrized only on an. Choosing other values of an > 1 will lead to 
infinitely many such solutions. 

To see this a different way, consider w = (ai, a2, .. . an)+(k, k, ... k ) = 
a+k for some constant k. Tw = (((a2 +k) - (al +k)), ((a3 + k) - (a2+ 
k)), . . . ((an + k) - (al + k))) = (a2 - ai, a3 - a2,·· . , an - al) = Ta. 
Applying the transform T on some starting vector plus a constant 
yields the same result as applying the transform to the starting vector: 
T(a+k) = Ta. We can choose any value of k > 0 and create a different 
game of infinite length from our starting game. 

Finally, we can apply any of the group actions from the symmetry 
group of the square (Ds) to any 4-value game and preserve its path 
length, because the actions of Ds will preserve neighboring vertices. 
This generates another infinite family of solutions: all cyclic rotations 
and horizontal/vertical/diagonal reflections of our starting vector. 

4. COUNTING UNIQUE 4-VALUE GAMES OVER Z 

In this section we consider a combinatorial approach to determine 
the number of equivalence classes of ;V4-game~over the integers from 
oto n - 1. For future simulations of empirical cases, we would like to 
be able to quickly determine the total number of games required for 
simulation. One may initially think that for any value of n we simply 
have n4 possible starting states as we can choose n numbers for each of 
the four positions. This approach, however, fails to take ~ accOlmt 
the symmetries of Ds discussed previously in section 3.5. \It is useful ) 
for our analysis to recall that the number of ways to choose k elements 
from a set of n for n 2 k is given by the binomial coefficient 

(~) - (n _n~)!k! 
Theorem 4.1. The nurnber of niq - arnes over the integers from 
o to n - 1 as a function of n is . n by 

f(n) = 8"1 
(n4 + 2n3 + 3n2+ 2n) 

Proof. The proof of f(nl.is by cases. Let k define the number of u@.e 
~h':~r integers in a given game ~¥(k) be the number of ~ initial states 

\ _ - I ,~ Ir.. ~~Ct.,~ h;"'1"~
l..-ILa.v''j 1\ ~"t"~.t-~ 

v'-<I~"t;..... "":'Il p..,!}'\." ~ CA-<-< <C. y....1. ~ ~ 

~a.~ 31((") ? 
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for a given k. We consider the contributions to f(n) for each case of k 
and simplify for the explicit expression of f(n). 'i ...",~ <& C~ ~ .... 9 
1. k = 4 -~ 4 c-&....d......:c.-S 4-­

When k = 4 we are considering a gam~~form (a, b,c,d). 
Fir~t WIl UGt.. that llilere are exactly G) ways tG determ ine the-

)l:Iftkttle integeIs a , b, c and ri. Given the 4 integers we then have ~, 
4! possible orderings. We recall, however, that under symmetry of 
D4 there are exactly 8 ways to order the elements (a , b, c, d) that 
represent the same initial state. There are therefore exactly 

g(4) = 4 ! ~~) = 3(~) 
~ games for k = 4. 

2. 	 k = 3 
For k = 3 we consider games of the form (a, a, b, c) . First we 

have exactly G) ways to choose the distinct elements a, b and c. 
We next have 3 ways of choosing which of the 3 elements will be 
repeated. Now we note that the 4 elements can only be arranged in 
1 of 2 possible configmations by considering one of the non repeated 

t 	'Il~ \Mo~-W( elements. Any possible configuration of the elements will leave the 
1:\.\.... ~~t::<;; "< unique element b with neighbors of a, a or a, c. We then have exactly 

'6<~ : ~ ~ ...~r U g(3) = 2.3(;) = 6(;)
~~-~~, 

unique games for k = 3. 

3. 	 k = 2 
For k = 2 there are actually two sub-cases to consider. 
(i) Games of the form (a,a, b, b) 

In this case we will first have (~) ways to determine the ~~ 
integers a and b. Next we note that there are only two possi-
ble u~ configmations of these elements, namely (a ,a, b, b) 
and (a ,b, a, b). 

(ii) Games of the form 	(a ,a, a, b) 
In this case we again have G) ways to determine the ~e 
integers a and b. Next, however, we have to choose which 
of the integers a or b we wish to repeat 3 times, which there 
are exactly 2 choices. Final ly we note that the only ~ 
configmation is of the form (a, a, a, b). 
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Each of the two sub-cases contribute a factor of 2(;) and we con-
clude that there are exactly 

1-

9(r)=4(;) 
ePt . &~ J} ~le games with k = 2. 

4. k = 1 
In the basic case where we have a game with only 1 ~ el-

ement it will be of the form (a, a, a, a). It is obvious that any 
arrangement of the 4 elements will result in the same game and be-
cause we have exactly n choices for a we get that there are exactly 
n games of this form. 

g(l) = n 

The total number of unique initial states is then given b:v 

By substituting in the definition of the binomial coefficients we have 
n 

j(n) = S(n - l)(n - 2)(n - 3) + n(n - l)(n - 2) + 2n(n - 1) + n 

If we expand each of the terms and collect like terms we find the number 
of unique initial states is given by 

j (n) = ~ (n4 + 2n3 + 3n2 + 2n) 

o 

5. THE DISTRIBUTION OF GAME LENGTHS FOR LARGE n 

In this section we make a few empirical observations about path 
length and consider their implications to gain a better understanding 
of the dynamics of the 4-game over Z. We first consider the effect 
of symmetry on the frequency distribution of path length. Next we 
evaluate the tightness of the bound on path length given in Corollary 
2.4 with the computed results. Finally we compare the distribution to 
the normal probability densit:v function. 
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5. 1. Accounting for symmetry. In section 4 we derived an explicit 
expression for the equivalence classes of a 4-game over the integers from 
ato n - 1. This, in fact , raises an important question when considering 
empirical results. Is it really worth it to account for symmetry when 
approximating the distribution of path lengths for a fixed n? To answer 
this we let E be the event that the initial state of our game is composed 
of 4 ~e integers (a, b, c, d) and subsequently consider the probability 
peE) if we do not account for symmetries about DB' In order to create 
a game of this form we will have n choices for a, n - 1 for b and so on 
giving us 

p eE) = n(n - l )(n - 2)(n - 3) 
n4 

We note tha~h the numerator and denominator are dominated 
by a term of n and that the limit for very large n is then given by 

lim p eE) = 1 
n-too 

Intuitively it makes that as n grows, we become increasingly more 
likely to choose 4 distinct integers to start our game. From section 4 we 
know that any game of the specified form (a, b, c, d) is in an equivalence 
class of size 8 meaning that if we do not account for synunetry on 
average \\'e will be over counting the munber of path lengths by a factor 
of 8. Now, however , note the relationship between fen) of section 4 
and the total number of games n4 in the limit 

lim f en) = ~ 
n4n-too 8 

So, although we are over counting the vast majority of path lengths 
by a factor of 8, we are also over count ing the total number of games by 
a factor of 8. The result is that for large enough n we see no qualitative 
difference in our distribution results and it is therefore not worth the 
extra computational costs to eliminate the symmetrical rases. As an 
example of this, consider the two events A and B such that A denotes 
picking a game of path length 4 from the set of all games not account ing 
for symmetry and B denotes picking a game of path length 4 from the 
set of all games with symmetry accounted for. The probability that 
a randomly chosen game from the integers [0 , . .. ,n - 1] has a path 
length of 4 for various n is shown below 
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n PiA) P{B) E 

2 0.5000 0 . 3333 0.1667 
4 0 . 5938 0.1818 0.4119 
8 0.5820 0.6066 0.0246 
16 0.5513 0 . 5848 0.0335 
32 0 . 5284 0.5519 0 . 0235 

Already for n = 8 we are seeing pretty similar results and we conclude 
that the effects of symmetry for reasonably large n are minor and not 
worth the additional computation. 

5.2. Theoretical bound for specified path length. In corollary 
2.4 we mention that the path length L of a game (a, b, c, d) can be at 
most 4fJog2(max(a, b, c, d))l , but we would like to investigate just how 
good of a bound this really is. In the following to plots we consider 
the distribution of length over the set of paths computed while not 
accounting for symmetry for reasons mentioned above. Figure 2 plots 
the path length distribution for n = 64,128,256 to demonstrate the 
very close matcil these clistributions have for increasing n. 

FIGURE 2. Distribution of Path Length for n = {256, 128, 64}
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First note that for n = 128 we have at best max(a, b, c, d) = 127 and 
therefore have a path length L at most 4·7 = 28, but we are observing 
a maximum length of only 15. Similarly, for n = 64 we observe a 
maximum length of 13 compared to 24. Furthermore when we increase 
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n to 256 and have a new bowid on L of at most 32 we bserve that in 
reality we have only gained one more iteration on our maximwn path 
length which is now 16. The reasons for this - . . , but it 
seems to indicate that our sequences are converging to (0,0, 0, 0) even 
faster than the method given in Theorem 2.3. 

5.3. Probability. If we let X be the path length, we can compute the 
mean and variance of our observations such that 

E [X] = L p(x) . x = 4.93192197 
:rE X 

11ar(X) = E[X2]_(E [X])2 = L P(x).x2- (L p(x).x) 2 = 1.34398723 
xEX xEX 

In Figme 3 we now plot the discrete probability distribution of the 
path length, and this time we include the continuous distribution for a 
normal random variable ,dth the above specified mean and variance. It 
is reasonably clear that this data does not follow a normal distribution. 
Flitme explorations of this topic may consider modelling the distri bu-
tion as a mixture of gaussians, or perhaps as a mixture of Poisson 
distributions. 

FIGURE 3. Game Length for n = 256 vs. N(4.931,1.344) 
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We see that the path length data has a much larger right-skew than 
a gaussian, and maintains a bimodal shape, In Figure 4, is interest-
ing to note that a large nwnber of games converge to the final state 
(0, 0, 0,0) after just 4 steps - cumulatively, more than 50% of these 
games terminate in 4 or fewer steps, and 91% terminate in 6 or fewer 
steps, 

FIGURE 4 , Cumulative Distribution of Path Length for 
n = 256 
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