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We examine the behavior of several variants of the n-value game, .f:. r;) +- tl.t'eWq, 
generalizing to arbilrary polygons and various sets. Key results in- .A $! carYl"" ' / VI '1J ' 
elude the guaranteed convergence of the 4-value game over the in- flU pOtft!~ r yYJ {' t!Spl>V! hi 
tegers, t he cyclic behavior of the 3-value game, and the existence of pr"J,t»f' ~' I'1 as ClYl fIIferes 
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1. I NTRODUCTION 7(}esl l'o-Yl'5 abo v1-l- o.TJI{ .,1-" 

The n-value game is a deterministic system based on a simple transi- In e c()7Vf ;1-1. t..VJ~", 
tion rule: from a polygon with labelled vertices, generate a new polygon _ "5U"$DI."') 

by placing labelled' vertices on the midpoints of its edges. We describe t t J 
the n = 4 case, other polygons generalize naturally. To begin, draw (ur{~rn o,.fr..."f"I ; . t! lA. 

-yldoJf oL\ (e.>t """ fll ~ a square and label its vertices with numbers (a, b, c, d). At the mid­
'fIt,e..~Q, (1 point of each edge, write the absolute value of the difference between 

the edges' endpOints. Finally, connect these midpOints to form a new 
square. Repeat until all vertices are zero, with the "length" of the game 
defined as the number of transitions required to reach the zero game. 
The transition (a, b, e, d) --> (Ib - al.le - bl.l d - el, la - dl) represents 
this rule. In this paper, we prove key properties of n-value games over 9 
(ffiferent sets. Section 2, authored by Yida Gao ~att Redmond, in­
vestigates the convergence and behavior of the 3, 4} Ylirue gamesovef 
.IE, and relates the 4-value games over .IE to thos over Q. Section 3, 
authored by Matt Redmond, investigates the general case of an n-value 
game over 1R, and demonstrates the existence of an infinite family of 
infinite-length solutions. Section 4, authored by Zach Steward, consid­
ers a combinatorial approach to counting the equivalence classes of the 
4-value game over integers in [0, n -1] for fixed n . Section 5, authored 
by Matt Redmond and Zach Steward, presents some interesting em­
pirical results about the distribution of path lengths for 4-value games 
over integers in [0, n - 1]. 
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2 VIDA GAO, MATI REDMOND, ZACI-I STEWARD 

2. n-VALUE GAMES oveR Z 

2.1. The convergence of the 4-value game. In this section, we 
establish that all 4-value games over Z converge to (0, 0, 0, 0) . We 
accomplish this by demonstrat ing that each game eventually reduces 
to a state in which all of its entries are even, and that games which are 
constant multiples of each other have the same length. This naturally 
gives a bound on the maximum length of a game, given its starting 
state. 

? 
Lemma 2.1. Ifr E lR+, (ra, rb, 1'C,1'd) has the same length as (a,b,c,d). 

Proof. Consider the entries after t steps of the (ra, rb, re, I'd) game. 
These entries are equal to r times the entries of the (a, b, c, d) grune 
after t steps by the linearity of subtraction.:Suppose the length of 
the (a,b,c, d) game is L. There must exist some non-zero entry n in 
step L ­ 1. This implies that in the (ra, rb, rc, rd) game, rn :I 0 at 
step L ­ 1) so the (ra, rh, rc, rd) game does not end after L ­ 1 steps. 
Finally, the (a, b, c, d) game ends on step L, with each entry equal to 
zero, so we must have r . q = 0 for each entry q in the Lth step of the 
(ra, rb, re, rd) game. Because r:l 0, q = 0 for all entries in the Lth step 
of the (ra, rb, re, rd) game, so these games have the same length. 0 

i..fr "du,e
n.i..l,"fJ.n 

We introduce new notation: let 9t be the vector corresponding to the 
game 9 after transitioning for t steps. 

Lemma 2.2. For any given game gJ 
has alt~ven entries. 

at least one of {gO,g],g2,g3,94} 

Proo~of procedes by case analysis over various parities. Let e 
represent an even element; let ° represent an odd element. It is handy 
to recall rules for subtraction; e - e = e, e ­ 0 = 0,0- e = 0, °­ 0= e. 

There are six potential configurations (up to symmetry over D8 ) for 
the parities of the starting game. 

(1) 9 = (e,e,e,e) 
(2) 9=(e,e ,e,0) 
(3) 9 = (e,e,o,o) 
(4) 9 =(e,0,e, 0) 
(5) 9 = (e,o,o,o) 
(6) 9 = (0,0,0,0) 

Examining each case in turn: 
(1) If all entries are even, 9 itself satisfies our condition. 
(2) After one step, 9] = (e,e,o,o). After two steps, 92 = (e,o,e,o). 

After three steps, g3 = (0,0,0,0). After four steps, 94 = (e ,e,e,e) 
and we are done. 
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(3) 9, = (e ,o,e,o). 9, = (0,0,0,0).93 = (e,e,e,e). 
(4) gl = (0,0,0,0).92 = (e,e,e,e). 
(5) gl = (o,e,e,o) . 92 = (o,e,o,e). g3 = (0,0,0,0) . g4 = (e,e,e,e). 
(6) 	9, = (e, e, e, e) . 

Each case becomes (e, e, e, e) after at most four steps. o 
Theorem 2.3. All4-value games over Z converge to (0, 0, 0, 0) 

Proof. From any starting configuration G = (a ),a2, a3, a4), take several 

steps until the game reaches a state where all entries are even. This 

will take at most four steps, by Lemma. 2.2. The new configuration 

r;even can be written as (2bl ,2b2 ,2b3,2b4 ) . By Lemma 2.1 , the length 

of c;even is exactly the same as the game (bl'~ ' b3 , boi). However, we are 


--?1-guaranteed that the maximum element in (bl'~ ' b3,boi ) has decreased~ 

. . ( ) . .

from the maxlmum element m al,0-:2,a3,a4 . Proceed mductlvely, by 
MOJl v-.I . stepping each new game until all entries are even (at most four steps 

each t ime), then factor out another 2. As the maximum clement is 
""I ,,~t ---- -::;, constantly decreasing , each game must terminate in (0,0, 0, 0) in a 

fin ite number of steps. 0 
(J +tlOJ!~'l,_-s(.s.t'" "1 .,.,.,I .f~~.n. p...,t..o.r: Corollary 2.4. The path length L of a game (a,b, c, d) is bounded above 

l _,," ';";'/~/ ad by 4rlog,(max(a,b,c,d»1
J:"t' IAftfof/ll (1," ,
b/~trly lI()kl4~ wPS Z;~:1 2.2. The orbits of t he 3-value gam e. In this section, we diverge 
tlt!l:..tS'~o,l't-( -.,:tYJ~ S~ from the 4-value game and consider the 3-value game over Z. We 
/ltt". t /C/~J f./,,,, (JI prove that all non-trivial J..value games cycle, rather than converging
/b t:J bt;~ ned IR. to (0,0,0). We accomplish this proof by examining the five cases which 

encompass all possible 3-value games. 
First, let us imagine the values in the tuple as points on a number 

line. For example, a starting triangle wi th (1,3,5) looks like this: 

,2 3 

.	 11 • 3 • 5 

FIOURI:; 1. A number line with points corresponding to 
(1,3 ,5) game state. 

Definition 2.5. Let range(G) be defined as the largest positive differ­
ence between any two points in a 9-value game tuple: 

runge(G) = Im""(9') - min(g,)1 
9;EG 9;EG 

.. ,~~k*:l r;"/'f ; ~ ntcC 
hilt. 111 ... I ~ ' ... fJ- 'SMC E,.
,,,,J,'t.t v~I"'$ .:d... hL 

IlI!.S~~'\ic...:, 
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Definition 2.6. A non-trivial :i-value game i8 one in whid~ the 
start state is not (x,x/x), where x E Z. 

Theorem 2.7. All non-trivial3-value games over Z cycle in (O,x,x) 
form. 

(0 .,';:" 
J H, Proof. The proof is by cases. Consider five possible cases for the non-

C<1O'1'fi •>d. t. ~ It<;.l"i VI!, • 	 (~ X':I,:)~
,. 0 :1 trivial 3-valuc game over Z : 

(.(Ilof:,Q.<;. v~"'1l j\h' (0,0," J 

ir.-t" 1~t. f,'f'.,;t.. '$0 (1) One zero and two numbers of the same Vfl.lue (O,x,x) : this case 
 ('J~3)
Ca.VI MOI'~ ~... tl~ sfe enters a cycle that returns a permutation of (0, x, x) on every step. 


(',j, ~
'lit. b,,:\ ~"<'v". . I. 
(Of' ~f.It t.f"W'I~ t. h'~ ' 01 '! (O,x,x)- > (1 0 - xl, Ix - xl, Ix - 01) = (x, O,x) 

~VJ1.lWlIIn"f.un~ t-""he.. 

StMld<rl"<-!~l'l'",,,,J. .f (x, 0, x)- > (Ix - 01, 10 - xl, Ix - xl) = (x, x, 0) ) 'J-:' a,.. '1- "":~'~~7·~ 1,'~' ~ 1IJ'e, !?\J1Vei'lUII . d"~ tI<s.'k /HIS' • 
tht rroof") (x, x, 0)- > (Ix - xl, Ix - 01, 10 - xl) = (0, x,x) ':,!"'r>r<h'{ d'!>o.whLfL. 1',j,(,

ouicl~ e.q(Jf""4l.C.~e.&t. mH'C­
(2) One zero and two numbers of diffe rent values (OIX, V): in this case, ~"'<'-"J..I'I? 

the range decreases by the positive difference of the two nOll-zero I 

numbers. Without loss of generality, assume y > x > 0: 

(O,x,y)- > (10 - xl, Ix - yl, Iy - 01) = (x,y - x,y) 

. 
Range of (O,x,y) = Iy - 01 = y; range of (x, Ix - yl,y) = Iy­


? -" 
(y - x)1 = x. In this case, the range decreases by y - x. 


(3) Two zeros and one non-zero nu mber (0,0, x): this case only occurs 

as a start state because two pairs of overlapping points are required 
to create two 7,eros and the 3-value game only has three points in 
total. Range stays the same and the game enters case 1. 

(0,0, x)- > (0 - 0, 10 - xl. Ix - 0) = (0, x, x) 

Range of (0,0, x) = Xi range of (0, x, x) = x 
(4) 	Three non-zero values in which t\VO values arc the same (x, y, V): 

The range stays the same and t he game transit ions to case 1. 

(x, y, y)- > (Ix - yl, 0, Iy - xl) 

Range of (x, y, y) = Ix - yi; range of (Ix - vI. 0, Iy - xl) = Ix - yl 
(5) Three unique non-zero values (x, y, z): 

Without loss of generality, z > y > x. In this case, the range 
decreases by y - x or z - y, and the new range is z - y or y - x. 

(x, y, z) -> (Ix - YI, Iy - zl, Iz -xl) = (y - x, z -V, z - x) Original 
range is z-y If z-y > V-x, new range = z-x-(y-x) = z-y, 
otherwise new range = z - x - (z - y) = y - x . The difference in 
range is either z - x - (z - y) = y - x or z - x - (y - x) = z - y. 

http:VJ1.lWlIIn"f.un
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THE N-VALUE GAME OVER Z AND R 

For all non-trivial 3-value games, the range is guaranteed to decrease 
at each step until the game transitions to a (x , VI U) (case 41 or (0. O,E <to:-- how do ~(k) k l)OO1 
(case 3) state, which both lead to the cycling case 1 state. Thus, all tn{'" ho.ppltJs-: 
non-trivial 3-value game5 over Z will reduce to case J and cycle. 0 

2.3. The equivalence of games over Z to IDl,1.e er Q. In this 
section we use Lemma 2. 1, Theorem 2.3, an Theorem 2.6 0 extrapo­
late the behavior of {3,4}-value games over Z to be avior over Q. 

T heorem 2.8. All4-value games over Q conver:ge to (0,0,0,0). 

Proof. Let 

( 
n l n2 n3 n4 ) f\ ,d.i G ~ 

'd1 ' d2 d3 ' d4 

represent our 4-value game over Q. By defining a common denomina­
tor, D = d .d-td3d4 , we can rewrite this as the equivalent game 

n1d2d3d4 11.jdld3d4 n3dl~d4 n4dl~d3) 

( D ' D ' D ' D . 


[n Lemma 2.1 we showed that for any r E IR+ the two games (a, b, c, d) 
and (ra , rb, re,rd) have the same length. In t.he game above we have 
r = bwhich if factored out gives us a 4-value game over Z. In Theorem 
2.3 we showed that every 4-value game over Z will converge to (0 , 0, 0, 0) 
and we conclude that by redUCing the game over Q to one over Zany 
4-vruue game over Q will converge to (0,0,0,0). 0 

Theorem 2.9. All non-trivial 3-value ga.mes over Q cycle in (O,x,x) 
form. 

Pr·oof. By deduction from Lemma 2.1, we Can conclude that a non­
trivial 3-value game (n1 d2 da n2dlda ~) over I1"l where D = d d d D'D'D ""l 123 
reduces to a non-trivial 3-value game (n 1d2d3, n2dld3. n3dl~) over Z, 
which by Theorem 2.6 cycles in the (0 1 x, x) form. 0 

3. n - VALUE GAMES OVER IR. 

In this section, we consider the propert ies of the n-valued game over 
the real numbers. Several questions come to mind: do all real-valued 
games terminate? If not, does there exist a real-valued game that 
demonstrates cyclic behavior? If not, does there exist a real-valued 
game of infinite length? We answer the first question (no) and third 
question (yes) by proving the existence of infinitely many games with 
infinite length. We accomplish this by representing a single step of 
the game as a linear operator (with a restricted domain), then demon­
strating the existence of an infinite game fo r each value of n. Finally, 
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we show that every infinite length game can be modified to generate 
infinitely many games of infinite length. 

3.1. Linearizing t he n-value game. Given an n-value game on IR, 
G = (al,a2," ,an), we produce each step by the transformation rule 
G, -> G,., = (a" a" ... a,.) -> (la, - ad, la, - a,i. ... la, - a,.1). Due 
to the absolute value, this transforma.tion is not representable as a 
linear operator; however, if we restrict the domain of the input to the 
set of vectors (m,) 7n2, . .. mn) such that ml < m2 < .,. < mn • we 
can eliminate the use of the absolute value function: ~ Cltl ~ 
(al,a2, ... an) -t (a2 a"a3 a2,·· · an al)' NotlC'C-ihat t:helast 
element has had its operands reversed. With this "increasing order" 
constraint, we can write Gt -t Gt+L as an n x n linear operator Tn: 

- 1 1 o o o 
o -1 1 o o 
o o -1 1 o 

o o -1 1 cD 
-1 o o 1 

3.2. Identify ing an infinit e length game for each n. To compute 
the next clement in the game, left-multiply by Tn. As an example, 
consider the effects of T4 on G = (1 f 5, 7, 11): 

~1 ~1 ~ ~] [ ; ] _ [ ~ ]o 0 -1 1 7 4[
- 1 0 0 1 11 10 

As this example shows, it is not necessar ily the case that t he output 
Gt+! maintains the "increas ing order" invariant. In general, increasing 
inputs are not guaranteed to be increasing outputs. For the special 
case, however, of an increasing eigenvector v of Tn l we are guaranteed 
that the invariant will hold: the output VI is guaranteed to be a scalar j 
multiple of v because T v = AV = v', A scalar multiple of an increasing 
sequence is an increasing sequence. 

If our intial game v is a real non-zero eigenvector of Tn . then we are 
guaranteed that Tnv = AV ::f O. In general, for all k, T,~v = >.kv ::f 0, 
so real , increasing eigenvectors of Tn are guaranteed to generate infinite 
length games. 

. :n oh bot c.oJl\t 
t'" 0)) S L"..

",u1f; pl. 3"""'" "".~ 
tht. 61).¥Y\ e... It."'-3~ ....\LOt> :..; 
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To demonstrate that there exists an infinite length game for all n, .. 
we must demonstrate the existence of a real , increasing, nonzero eigen· 
vector/value pair V n , An for all n. - -_. 

-- -' 
'7 3,3. EstabUshing and bounding a pos itive real e igenvalut:..,J•• ...\' -1- A I 0 0 ... 

~ 

o -I - A I 0 0 
o 0 - I - A 1 0 

o 0 - 1 - A I 
-I 0 ...... 0 I - A 

C9 xpanding det(S.) by cofactors along the bottom row, we see 

I 0 0 ... 0 
- I - A I 0 0 

det(S")~- I(- I ) I +n 0 -I-A I 0 + 

0 0 -I - A I 

-1- A I 0 0 
0 -1- A I 0

(1- ,1)( _1)"+" 
0 

0 0 - 1 - A 
The determinant in the first term reduces to I, and the determinant 

in the second term reduces to (-1- >.)n-1, The characteristic polyno­
mial of T" is then ( -I )2+" + (1- ,1)( _ 1)'"( -1- ,1)"- 1 ~ O. Expanding, 
we have 

(_1)'+" + ~ (n ~ 1)(-1 )"-1A' _ ~ (n ~ 1)(_1)"-1 ,1'+1~ 0 
k=O k-o 

(_1)2+" + (_1)"- 1 ~ I) (A' ,1'+1) ~ 0(n ~ _ 
k=O 

We examine the pattern of signs on this polynomial to determine 
the number of positive roots. In each case, >. = 0 is a root, so the 
coefficient on the constant term is zero. 
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When n is even, the sign pattern is ~)O)~)O). 

~ ~ - I 

When n is odd, the sign pattern is (-, .. . , -, +, ... ,+,0) . ~ 
~~ 

.!!.±! ,,-I, , 
Each case has exactly one change of sign, so there exists exactly one 

positive real root for each characteristic polynomial by Descartes' Rule 
of~~ns [1]. Let this eigenvalue be An. We claim that 0 < An < 1 for all 
nt)(? see this, consider the meH!oq. fOl:....fiJ!.din a bound on the largest 
positIve ' real root ora - polynomial via synthetic divisio: ividing a 
polynomial P(x) by (x - k) will result in a polynomial wit 1 all positive 
coefficients if k is an upper bound for the positive roots [2, Eqn. 15J. 
Dividing each of the characteristic polynomials by (An - 1) (easily done 
symbolically on a CAS) yields polynomials with all positive coefficients 
for all n , which demonstrates that 1 is always the least integral upper 
bound. 

~ 

3.4. Identify ing an increasing e igenvector. To determine the cor­
responding eigenvector Vn = (ai, a2, ... an), we solve (Tn- An1n)vn = O. 
T his produces the following set of equations: 

,(-I - A.)al + a, ~ 0 (I + >.,,)al ~ a, 
I(-I - >..)a, + a3 ~ 0 (1 + AII )a2 = a3 

ar i 
(1 + An)an_l = an 


(I - A")a,, - al ~ 0 

(-1 - A,~)an_ l + a.. = 0 

(1 - An)~. = a[ 

Arbitrarily, let an = 1. This forces al = (1 - ...\nL which forces 
a2 = (1 - ...\n)(l + An). In general, for 1 ::; i < n we have ai = 
(1- ...\n)(1 + ...\n)i- I. An eigenvector that corresponds to the eigenvalue 
An is thus 

(I - A,,) 
(I - >.,,)(1 + >.,,) 
(1- >.,,)(1 + >..)' 

(I - >'.)(1 + >.,,)"-' r.\ 
1 V 

~hO,i"W "'. co!." " . M' <b),
We verify that this eigenvector IS in mcreasing order for all n(-jgiven o,J JJ. t 

0< >." < I , we have (I - >.,,)(1 + A,,), < (I - >.,,)(1 + >.,,)k+ l because "'('~' 3 f{ hut 
(1+...\,,)k < (l+...\n}k+l and (I-A,,) > owhen 0 <...\n < 1. Additionally, t " USl- ." r..... j 
we have (I - ,1,,)(1 + >.,,)"-' < 1 for all A" < 1 because (I - >.,,)(1 + 
>'J-l~ l. 1 

OV<>1d bt~.b'"~ ':..·f 
o Of'O"" f~ ' 'lh:I ,f <t
I'"" )I. !.",1 .J,I,-.~ 
$~'p 0.a ",clJ bHiil<S 

'4- ~''' e'·"'.-n ~,.J;;;-
'py ,~,\t 0'1- I'eW<> , .r '" 
"ru\\ {1IvJ"~\f frot11 enlJ or \tlt. 
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Empirical ly, for the n = 4 case, we have ),4 ~ 0.839287, so the eigen­
vector which generates a game of infinite length is approximately G = } 

c~(0.160713,0.295598, 0.543689, I ). The progression of this game after t 
t imesteps results in GI = (0.839287)'· (0.160713, 0.295598, 0.543689, 1). 

3.5. Generating infinit ely many solutions of infinite length . 
Our choice of an = 1 was arbitrary - t he eigenvector we obtained was 
parametrized only on an. Choosing other values of an > 1 will lead to 

,al rhdf!l infinitely many such solutions. 
111'"" fo.~\ r"" f~-1 To see this a different way, consider w = (ai, a2,'" a,~)+(k) k, . .. k) = 

'i~~t"Fl,* '·f;;~f' a+ k for some constant k. Tw = (((a, +k) - (a, +k)), ((a, + k) - (a, + 
l"r'r",,,',,,, • k)), ... ((n., + k) - (al + k))) = (a, - al,a, - a" ... , a" - al) = Ta. 

P:~"'t-? ,Applying the transform T on some starting vector plus a constant 

lyields the same result as applying the transform to the starting vector: 
!0,' l\,' dQ.'Sc ft It' 1T( a +k) = Ta. We can choose any value of k > 0 and create a different 
\ ' e~ (' l!)($~ of !game of infinite length from our starting game. r::', 
~l j~ c:,.. 'Mitt; Of I Finally, we can apply any of the group actions from the symmetry i 

I "h~ ~re. ~e. group of the square (DB) to any 4-value game and preserve its path I 

';f~t.~ ~ 0. ~() ~7 I length, because the actions of DB will preserve neighboring vertices. 


,J 	 1 This generates another infinite family of solutions: all cyclic rotations I 

I and horizontal/ vertical/ diagonal reflections of OUl' starting vector. J , ' 	 , 
4 COUNTING UN IQUE 4-VALUE GAMES OVER Z ... uJ1.,,,,,f do ~,;-n,!."''''''

"eQu/V'Ctle,,'1Y ~ ,..."", 

:r eOHlpt.t... (e-/1.J, In this section ider a combinatorial approach to determi~eJ:l))mfl' t1,f'e... 111 ~ 
YrlI~ l.FnJt.I'.,.t6-tHl'.//f'6tt the nurobtr of I ivalence classes a 4-game over the mtegers from fdl/~n,J'feAlo ~"""e.s 

.'1oW Wlt.t/ftd- lAIr' " :x: 0 ,"'' oJ~v..; . f" I Id I'k t t?
stUdl'eq t1Jt corel'S::. As to n - 1. l'br uturc Slmu atIOns 0 emplllca cases, we wou leo e.7<HVO! ,
p.,yje.rJ -fh" t/ 1:$ (?Q~ be able to quickly determine the total number of games required for (O)\l'Z.)~..:.,(tl l)l)'3\7 
~ ........~ (b"Q'~' ,i~1(, simulation. One may initially think that for any value of n we simply (l U",", ....( ,/ " •... ,. •., ,., , Z>',l)~ \,t)I,~ ).., 
hof .n a- p0<;.'}/04') o~ have n4 possible starting states as we can choose n numbers for each of H<WJ o.bewt­

,~hllst'$ I<l'Jlh'/1 p,,1!., the four positions. This approach, however, fails to take into account ( :--- I ( z ~? 
em,. 	 I' fD d' d . I' . 35 I ' f I 0,';1,') ••~ O,Z'Ij'L,,"hn~e.~ ...4He, "-.," t lC symmetries 0 B 15cusse prevIOus y In sectIOn . . t 15 use u I 	 . 
;> WI 	 {i.t.Js.€t..LtWlmo. 2.1 
"I.49J ,'e, I /tt.';Jt;" d:S for our analysis to recall that the number of ways to choose k elements 
~!~,! &:1 !Jwt~. so:r from a set of n for n ~ k is given by the binomial coefficient 

~M .'f" ""''' . ...I....~, 	 (n) nlthf v":J ,.,~/v('CltI J"f!~«n-z 1\e.~ 	 =' 
";hw mo.:\ ~J",,,.J.~.e ~ k (n - k) !k! £<ffi.} ~.... '" d.,·~ 
ef~ts' ore 'fA"'" of:. T heore 4 .1. The number of unique -I-games over the integers from ~lotoC' ~ clur~ ~, 
fht. J()"'t... 7 It 0 to - 1 a function of n is given by ~ 1~roh~fJt:; btf~!efl\ 

{D, 1,2.".'1 Yl-~ " . _ 1 ( 4 , , ) '5d1l"J,1/ d. {;f}h:J IS 
v:>'htt1t.v!.f" '\. MtJ f()fS'/.o." IS Q'SJad) f(n) - '8 n + 2n + 3n + 2n ~ ,·rnpo.,.'1e.tt1:­

;C " "",p" ~"'CHIe.. 	 f. ~~ I II.- .o;;~e;,.;- IfS' ~I~ ,. Proof. The proof of f(n) is by cases. Let k ae6'!!p the number of unique~ 
&~I't1~ ¥- pI. "ClfS integers in a given game and g{k) be the number of unique initial states 
e.'I<OImp'te.s '/b -ert~Vf'e... ------- -. 

cO'Y'}ceftu'l/ c.moif,('<s~pJI'3 	 t. ..,.f dur ~ f. /h,'.., "';'t .. ..,.,• 

•f !he 1",.1,-..", bqoreo . Oo,,"~ f/J," ..../""'Vl.. htlp. 

d l''SCV<;-:; /¥lq ,t "....10 I"f!. Olhst.-¢l cl(~. 

f3-Nef uorf...p {ts co." Cf»'YIYYlr.n1'~ OJfe 

{jo.'/icv1""/~ ~F/.'<>·",)& '" r<>h<l$!I'j 

Vbe<'OUI5t 11.'( <on "f.olftJf Cft(r«i- "",<vnJ.rsf.o.nd,'d'" 


http:p.,yje.rJ
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( 

, 	 I ,,~d.e vb 
It i-	 WH' J.. I'r>dvel""'j ~ \ L 

,$'(>100'\ .... rt.6Vl'1ttOl.r'lL!{ . cI ~ <' c- c.. 0 

(t'1' ) CM'lt.rp1-vQI u~\..,,~~~ 0. 1(1 J.. c.. 
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unJC!;" 'Sfo.'1t{.,,.9. t ,4 Qd..J 	 ~ 
"5 -G(,\)':I:£ (0'.),;) Tor a given k. We consider the contributions to f(n) for each~k 

o " k ~ k and simplify for the explicit exp ression of f(n). 	 ,... " '/ 	 I), ,"11. 	 k ~ 4 .;.,,, ­

When k = 4 we are considering a game of the form (a,b,c,d). 
First we note that !J,1ere are exactly (:) ways to determine the 
unique integers a, b, c and d. Given the 4 integers we then have 
4! possible orderings. We recall, however, that under symmetry of 
D4 there are exactly 8 ~Is to order the clements (a, h, c, d) that 
represent the same initial state. There are therefore exactly 

~"'""'" Wltu-, -: 

unique games for k = 4. 

2. 	 k ~ 3 
For k = 3 we consider games of the form (a,a,b,c) . First we 

have exactly (;) ways to choose the distinct elements a, band c. 
We next have 3 ways of choosing which of the 3 elements will be 
repeated. Now we note that the 4 elements can only be arranged in 
1 of 2 possible configurations by considering one of the non repeated 
elements. Any possible configuration of the elements will leave the 

'" q '" b 
unique element b with neighbors of a, a or a, c. We then have exactly c b C Q 

unique games for k = 3. 

3. 	 k ~ 2 
For k = 2 there are actually two sub-Ci\S€'.s to consider. 
(i) 	Games of the form (a, a, b, b) 

In this case we will first have (;) ways to determine t;.f\{nique 
integers a and b. Next we note that there are only~ossi­
ble unique configurations of these elements, namely (a, a, b, b) 
and (a, b, a, b) . l (:'.) 

(ii) 	Games of the form (a,a,a,b) 
In this case we again have (;) ways to determine the unique 
integers a and b. Next, however, we have to choose which 

j /«tMflo:r 
of the integers a or b we wish to repeat 3 times, which there 
are exactly 2 choices. Finally we note that the only unique 
configu ra.tion is of the form (a,a,a,b) . 

.?(~) 



2.4 with t he computed results. Finally we compare the distribution to 
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~ "0Each of the two sub-cases contribu te a~ of 2(;) and we con­
clude that there are exactly 

unique games with k =:1 = 4(~) 
4. k = 1 

In the basic case where we have a game with only 1 unique el­
ement it will be of the form (a, a,a, a). It is obvious that any 
arrangement of the 4 elements will result in the same game and be­
cause we have exa.c~,\n choices for a we get that there are exactly 
n games of this for .:~ 

~ d>'I g(l) = 'b 

The total number of unique initial states is then given by 

By substituting in the definition of the binomial coefficients we have 

n
f(n) = 8(n - 1)(n - 2)(n - 3) + n(n - l)(n - 2) + 2n(n - 1) + nO 

If we expand each of the terms and collect like terms we find the number 
of unique initial states is given by 

f(n) = 81 
(n' + 2n' + 3n' + 2nb 

o 

5. THE DISTRIBUTION OF GAME LENGTHS FOR I~AH.GE n 

In this section we make a few empirical observations about path 
length and consider their implications to gain a better understanding 
of the dynamics of the 4-game over Z. We first consider the effect 
of symmetry on the frequency distribution of path length. Next we 
evaluate the tightness of the bound on path length given in Corollary 

the normal probability density function. 

), ~Ipfvl . 
<Y",arv"UA..,J 

+k~".S. 
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."""" ,f
5.1. Accounting for symmetry. In section 4 we derived an explicit 
expression for the uivalence classes of a. 4-game over the integers from ~ - oto n - 1. This, in fact , raises an important question when considering 
empirical results. Is it really worth i t to account for symmetry when 

.:r::~ ~O} 'VI' 1,~Gtt approximating the distribut ion of path lengths [or a fixed n? To answer 
gl,,/f£ c.ovfl ' j ~f~' this ':Ye let E be the event that the initial state of our game is compose~ 
Do 'i0u nu.iII~ '111 1-h ~+- of 4 uni ue inte erg a, bed and subsequently consider the robabilit 
'lht- r(lo'bCt~t:, u f4 P E) if we do not account for sl'mmetries a ou g. In order to create 
0."1 O!().Mt II &"lO ~? a game a t 115 a rm we will have n choices for a, n 1 for b and so on 
UYlI(4'ut. fl'1,.t'\~ , .. 


I ",b"h;[,"/v fl1~tglVlTlg us 

7h~ fJ '/h I" VOI?V/!-­": rt": 1,; /II...p,...c.J./-.\:_ qo"'El prE) = n(n - l)(n - 2)(n - 3) ~ ..,"< 

I" 5~ ~ r ~. I Q b c .....J 01" n' •.,. M" u.il'~ 

/0 ~ (. f'" ",,[ ,,) ,.•JL' 
l',,) , ./ .1••1- ... q ..... -·~liE o~().~" I 1 f"",l; We note t1~~ both the numerator and denominator are dominated 
~ t I tJ(L 1'f'JiL~~~ by a term of T7."and that the limit for very large n is thcn given by 

. ~~'''I etv/v<>fvrc..L c,'~c q~ 
,0 ",t {,{' f.he <;f!..e...., lim p rE) = 1
c.J PI";'~t (0. 'b e Ol) ~ n-fOO 

. ~0>.t'A .)) 

Intui tively it makes that as n grows. we become increasingly more 
likely to choose 4 distinct integers to start our game. From section 4 we 
know that any game of the specified form (a, b, c, d) is in an equivalence 
class of si.,;e 8 meaning that if we do not account for symmetry on /,.hcJ!JCHJ "'4\..... e 
average we win be over counting the .Ilum~er of path lengths by a f?ctor t?-- (J11/;nfs '6ifY1fl~ 
of 8. Now, however, note the re1atlOllsh1P between /(n) of sectIon 4 -seeil rOd,r1D( ,' 
and the total number of games no1 in the limit by c.~: f"ec;.v~ 

I.M~' "? ""'" 
lim 01 ,;.:..,,""f(n) = ~ to n. 

n4 ' 'I to < " h":'
n-fOO 8 /Ifr'I' g (1"')1'1

10 un'?" 
So, although we a.re over counting the vast majority of path lengths \ Oh.IM l."••-/J$td, 

by a factor of 8, we are also over counting the total number of games by jJ;M 'f Iht -Se th\! 
a factor of 8. The result is that for large enough n we see no qualitative 50'1Yhe.. tj,""j ~ 
difference in our distribution results and it is therefore not worth the 
extra computational costs to eliminate the symmetrical cases. As an 
example of this, consider the two events A a.nd B such that A denotes 

:r'~ ~hll f,o:t !.~. I"e Ipickin a game of ath len th 4 from the set of all ames not accountin 

oHf.\·s el~ t ~""C.e.. .or symmetry and B denotes picking a game of pat 1 engt 4 from the jl..-'(Jr" ~/to..l .,. 


HI>t.i~ yY\~::;'tC"h ;.-q,. set of all games with symmetry accounted for. @"proba@I~~ t1:fl. f"~~I1\"'''~;

n"'f fUj"",t covnt'l"t'Sa randomly chosen game from the integers [O, ...• n IJ has a path (w&,.fI/~LS~,,"t"M:Ot~ 

4 " ; '.~ T'" " (..... I ~ f' / '" ""oeM' , ~ V"f)O;' ot:C.o~t'~~ en£. length of 4 fo r vanous n 15 shown below ~,.,1'" Q; f6' or tM-JNt 'I: .) 


6'1'f'''''''''Y l>o'I,? \)r I

01- 11>'" " . t,/.I '/-1.....<s; '~"or....l 'y~m.l"':) <I'- '~M..l"j Npt~ftcl f...MS; n ~ 

~\;,+>i.\ ~.1lll""1.S ,r o,><ume. no ftf,oJ.at ttttYJ< hut 'M..t~y",...t"{' n(n.0(n.iy •. t,->n'u.,,< ..'''1 \ 
t 

J ..J,,'1"" .11 ._" "" \I ., '1 'I ". I ; , t!> b.!'< ~ i'M~.\ coM,,,. " ; ~ "-'8 
~t.ej 4.\ ~l l' " 'I " I, "n"\I II 

,,+t.Cl (1\ fh.t. I' ; «11 ) -) Yg: 

C,.l'.NIIot'l w,." h1,. ,1'\ " t, h()Mv';-S ~rlitl" ,1\ H-t f('Ot t co." 

S~1"101'lq !J.c,. ",t DWrO)(I,l1/'I- Idl"t r' 

http:n(n.0(n.iy
http:ftf,oJ.at
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n P{A) P{B) , 
I) 
~ 0.50~ 0.3333 0.1667

t-..

I: 4 0.5938 0.1818 0.4119 
1~ r..~PIl.(,··(Y'~d~ 
_oW "'"'1 Fr"A\ 
~.,."k' ;r:f- ~"".how F?'S'>8 0 .5820 0 .6066 0.0246 

16 0.5513 0.5848 0.0335(;r: vJO,J,r ;;7.>•• ;~ look /'1'
~'1o.~~~]: 1'/;' (!O"1"'~/rJ fo ~0f ,> 32 0.5284 0.5519 0.0235>2~) ,d ......eNter' )-..oW t1I'l'\ J.: :I~ 'fh4t wh~Y. 40V w"vI~:r.. WO(l tf W" (J P:xlJtc.t? 

fht lo~t( "f. '§ 5":. j Already for n = 8 we are seeing pretty similar results and we conclude - r . 
c~!.MT' bt- cAtd.~t- that the effects of symmetry for reasonably large n are minor and not 
fo ~tt. sf»rl ,OI. 1LJ worth the additional computation. 

7hrJ- ~i)'701""iI1lq ato .he 
C\ "'btt. c...°i'oL p"r~ 5.2. Theoretical b ound for specified path length . In corollary 
$vtfl,,!-I~7!'!1 2.4 we mention that the path length L of a game (a, b,c, d) can be at 
c.O.o')VHl j': most 4pog2(max(a, b, c,d))l, but we would like to~~estigate just how 

good of a. bound this really is. In the followin~lots we consider 
the distribution of length over the set of paths computed while not 
accounting for symmetry for reasons mentioned above. Figure 2 plots 
the path length distribution for n = 64, 128, 25~onstrate the 
very close mutch these distributions have for increasing n~ r-t ru e,.C: ~' {f,/j 

FIGURE 2. Distribution of Path Length for n = {256, 128,64}.-!;-- f:"I e.~~f~ ~t~c.~~~f!~ 
"U/t t". '" Q' "' __.._..... 'TWt~dttoI P 'i!#O prOs #tvI) 

• -==~ JOIbtis Qf" 1tJ-o f 
~,...&.I\"'" ('QQ.Oo\ 

'. . ~- ~ 17,:)<IJ7, < ~g . • 

First note that for n = 128 we have at rkst max(a,b, c, d) = 127 and 
therefore have a path length L at mos.t 4 .,~ 28, but we are observing 
a maximum length of only 15. Simihtrly, for n = 64 we observe a 
maximum length of 13 compared to,,24. Furthermore when we increase 

ilot t~t<t.~ 
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n to 256 and have a new bound on L of at most 32 we observe that in 
reality we have only gained one more iteration on our maximum pay-'~ 
length which is now 16. The reasons for this are non-trivial, but<l!.J 
seems to indicate that our s uen are converging to (0,0,0, 0) e~ 
faster than.. the method given i Theorem 2.3. - . ,....-........,.


L--(&.p ~l« .,. e~~~f;<;\ ~ 
5.3. Pro ba bility. If we let X be the patTi length, we c~~~the 

mean and variance of OUf observations sllch that .~ fkt~f..J"t..~[ (II'("' 


E[X] = L pIx) . x = 4.93192197 I!><f t"""t"~II:i -; 
.eX 

VarIX) = E[X']-(E[XlJ' = L P(X)·x'- (LP(X). x)' = 1.34398723 
z EX :t;E X 

In Figure 3 we now plot the discrete probability distribution of the 
path length, and this time we include the continuous distribution for a 
normal random variable with the above specified mean and variance. It 
is reasonably clear that this data docs not follow a normal distribution. 
Future explorations of this topic may consider modelling the distribu­
tion as a mixture of gaussians, or perhaps as a mixture of Poisson 
distributions. 

FIGURE 3. Game Length for n = 256 VS. N(4.931 , 1.344) 

o0.5 

0.' 

r'~ w...~al ....,',,~ w}oj 1-h oI ,',<,<h. dls ~,;M1i" 
~'i H'III; <ht'>tr«.70.3 

\~ ~ ~I. :I. .mIl.. ~..""'s <"'" 'j.<W.i' 
Se.Q.. Co."'\.. ~t..().s~-n .p,f' ~t s:h~"'p-,.! 

0.2 j""'l'"1h I..~N. :; .,.. " k~iI< 4 , 
t=;r t/. '- 01 "1 .. 1- 0; '" 

0.1 l/$ Hu c,. t. A,,~V1" II~ I' 't M,1's;t j:r ~&~'SyY'I ­

0tl1t • {> t. ~ '> '1 ? 
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We see tha.t the path length data has a much larger r~3t.sew than 
a. gaussian, and maintains a bimodal shape. In FigurEf!: is i teTest­
iog to note that a large number of games converge to th nal state 
(0,0,0,0) after just 4 steps - cumulatively, morc than 50% of these 
games terminate in 4 or fewer steps, and 91% terminate in 6 or fewer 
steps. 

FIGURE 4. Cumulative Distribution of Path Length for 
n= 256 
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