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ABSTRACT. The n-value game is an easily described mathematical
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We examine the behavior of several variants of the n-value game, ? T v gt H\i‘eﬁ‘ﬂwﬁ

generalizing to arbitrary polygons and various sets. Key results in-

clude the guaranteed convergence of the 4-value game over the in- 7(—/?53 f
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tegers, the cyelic behavior of the 3-value game, and the existence of
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1. INTRODUCTION vechione obou
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The n-value game is a deterministic system based on a simplé transi- #2¢ com 1€«

tion rule: from a polygon with labelled vertices, generate a new polygon

by placing labelled vertices on the midpoints of its edges. We describe
the n = 4 case, other polygons generalize naturally. To begin, draw
.{;cdum&(ﬂ**“"f”\ a square and label its vertices with numbers (a,b,c,d). At the mid-
neede point of each edge, write the absolute value of the difference between
the edges’ endpoints. Finally, connect these midpoints to form a new

square. Repeat until all vertices are zero, with the “length” of the game

defined as the number of transitions required to reach the zero game.

The transition (a,b,c,d) — (|b— al,|]c = b|,|d — ¢|, |a — d|) represents

this rule. In this paper, we prove key properties of n-value games over

different sets. Section 2, authored by Yida Gao and Matt Redmond, in-
vestlg&tes the convergence and behavior of the (—‘ 3,4 }value games over

Z, and relates the 4-value games over Z to those over Q. Section 3,

authored by Matt Redmond, investigates the general case of an n-value

game over R, and demonstrates the existence of an infinite family of

B S infinite-length solutions. Section 4, authored by Zach Steward, consid-
&\i winted . T ers a combinatorial approach to counting the equivalence classes of the

wenden ohekhee 4-value game over integers in [0,n — 1] for fixed n. Section 5, authored

w csold on by Matt Redmond and Zach Steward, presents some interesting em-
5{4@ e n pirical results about the distribution of path lengths for 4-value games
coml ey, s over integers in [0,n — 1].
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2 YIDA GAO, MATT REDMOND, ZACH STEWARD

2. n-VALUE GAMES OVER Z

2.1. The convergence of the 4-value game. In this section, we
establish that all 4-value games over Z converge to (0, 0, 0, 0). We
accomplish this by demonstrating that each game eventually reduces
to a state in which all of its entries are even, and that games which are
constant multiples of each other have the same length. This naturally
gives a bound on the maximum length of a game, given its starting
state.

Lemma 2.1. Ifr € R*, (ra,rb,rc,rd) has the same length as (a, b, ¢, d).

Proof. Consider the entries after ¢ steps of the (ra,rb,rc,rd) game.
These entries are equal to r times the entries of the (a,b,c,d) game
after t steps by the linearity of subtraction.” Suppose the length of
the (a,b,c,d) game is L. There must exist some non-zero entry n in
step L — 1. This implies that in the (ra,rb,re,rd) game, rn # 0 at
step L — 1, so the (ra,rb,re,rd) game does not end after L — 1 steps.

' Finally, the (a,b,¢,d) game ends on step L, with each entry equal to

zero, so we must have r - ¢ = 0 for each entry ¢ in the Lth step of the
(ra,rb,re,rd) game. Because r # 0, ¢ = 0 for all entries in the Lth step
of the (ra,rb,rc, rd) game, so these games have the same length. O

We introduce new notation: let g, be the vector corresponding to the
game g after transitioning for ¢ steps.

Lemma 2.2. For any given game g, at least one of {go, 91,02, 93,94}

has all even entries.

Pmofl‘%roof procedes by case analysis over various parities. Let e

represent an even element; let o represent an odd element. It is handy

to recall rules for subtraction: e—e=e¢,e—0=0,0—¢=0,0—0=e¢.
There are six potential configurations (up to symmetry over Dg) for

the parities of the starting game.

(1) g = (e, e,e,€)
(2) g = (e‘e! e’ O)
(3) g = (e, e,0,0)
(4) g = (e,0,€,0)
(5) g = (e, 0,0,0)
(6) g= (0,0,0,0)
Examining each case in turn:

(1) If all entries are even, g itself satisfies our condition.

(2) After one step, g1 = (e,e,0,0). After two steps, g» = (e,0,€,0).
After three steps, gs = (0,0,0,0). After four steps, g4 = (e, e, ¢,¢€)
and we are done.

in"f’nvduc €.

natmt ey
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(3) g1 = (e: o,e,o). i3 = (O, 0,0, 0). g3 = (8,6,6,6).
(4) g1 = (0, 0,0, 0)' g2 = (e:e; £, 8)-
(5) g1 = (O,G,C, O)' g2 = (olesole)' g3 = (O, 0,0, 0)' g4 = (B,C, 6,6).
(6) g1 = (e,e,e,e).
Each case becomes (e, e, €, €) after at most four steps. O

Theorem 2.3. All 4-value games over Z converge to (0, 0, 0, 0)

Proof. From any starting configuration G = (a,, ay, as, a4), take several
steps until the game reaches a state where all entries are even. This
will take at most four steps, by Lemma 2.2. The new configuration
G®¥** can be written as (2by,2bs, 2b3,2bs). By Lemma 2.1, the length
of G*¥*" is exactly the same as the game (by, by, b3, bs). However, we are
— guaranteed that the maximum element in (by, by, bs, bs) has decreased +— msc_r,l-w* pon : nel avec

1# fime stace
from the maximum element in (a,,as, as,as). Proceed inductively, by mn‘m’{"’ ubie cdi be

moxt v/, stepping each new game until all entries are even (at most four steps negative ?
{ ) each time), then factor out another 2. As the maximum element is
“”‘; "°a_;"‘ - ---- —3 constantly decreasing, each game must terminate in (0,0,0,0) in a

o finite number of steps. O
o TR S
(aer #5 simplty B "“““'f" Corollary 2.4. The path length L of a game (a, b, ¢, d) is bounded above
A et sagiog by 4[log,(max(a, b, ¢, d))]
/nraf ?‘ y 82

Tk W""f"‘ o I, AR
priefly ne mﬁ j 2.2. The orbits of the 3-value game. In this section, we diverge

necessapy SMEE ,(‘frorn the 4-value game and consider the 3-value game over Z. We
ol er gxf‘:la/ s prove that all non-trivial 3-value games cycle, rather than converging
fo A bot mo? . to (0,0,0). We accomplish this proof by examining the five cases which
encompass all possible 3-value games.
First, let us imagine the values in the tuple as points on a number
line. For example, a starting triangle with (1,3,5) looks like this:

* L] @
. A : . i

l 2 3 4 5

o1 | 03] 5

FIGURE 1. A number line with points corresponding to
(1,3,5) game state.

olic conn e e!eﬂ’ Definition 2.5. Let range(G) be defined as the largest positive differ-

(ot ence between any two points in a J-value game tuple:
receoling ¥

fotlsasny OfexY, range(G) = | max(g;) — min(g:)|
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Definition 2.6. A non-trivial 3-value game is one in which the
start state is not (z,z,x), where € Z.

Theorem 2.7. All non-trivial 3-value games over Z cycle in (0,z, z)

form. _
NG
dor lebing the Proof. The proof is by cases. Consider five possible cases for the non- ?;‘ x,x\ .’Xl .
il“;::: bofore diviay trivial 3-value game over Z: (0’0'% i Weqm’\‘ﬁ e
o the firal s «w€ (1) One zero and two numbers of the same value (0,z,z): this case (:( ’ ‘b_ !
coun bﬂﬂ”‘- ?‘5‘; see enters a cycle that returns a permutation of (0, x, ) on every step. (’ H 3 e,?w'*miﬂ af
0 retyce, X, d
'7?0;- of;l'e‘ir"?#’l?-t b;‘i""’ Lf (0,:1:,:1:)— > (I0_$I’1$_$|1|m—0|) = (:E,U,:D) ﬂ‘
Summat i el & _ - D aren't consedonrug fhese b
5?dex°‘r%"omth °{ (33‘,0,.13)—- > (Im - 0': IO - w]) ]J: - Tl) = ({L', xs(]) %E;; E?(}'NQ‘EVI?? :#’"*’% M'.ﬂ:)( 3
fh pree @200~ > (e~ al,lg = 0,0 ~al) = (0,z,z)  Symmeckig daeﬁjm. Ferhogs
qutvele e
(2) One zero and two numbers of different values (0,z,y): in this case, ex:h'm‘ﬂy —_fl -
the range decreases by the positive difference of the two non-zero
numbers. Without loss of generality, assume y > z > 0:
(0$$1 y)_ > (lo - El, |3: - yl! ‘y - UI) = (x!y — y)
i Range of (0,2,y) = |y — 0] = y; range of (z,|z —yl,y) = |y -
‘Néu T 72— (y — z)| = z. In this case, the range decreases by y — .
’ Pl ' (3) Two zeros and one non-zero number (0,0, z): this case only occurs

as a start state because two pairs of overlapping points are required
to create two zeros and the 3-value game only has three points in
total. Range stays the same and the game enters case 1.

(0,0,z)— > (0—0,|0 — z|, |z — 0) = (0,2, 2)

Range of (0,0, z) = z; range of (0,z,2) =2
(4) Three non-zero values in which two values are the same (z,y,y):
The range stays the same and the game transitions to case 1.

(z,y,9)— > (‘m - ?}]10: ly - )

Range of (z,y,y) = |z — y|; range of (|Jz — y,0, |y — z|) = |z — y|
(5) Three unique non-zero values (z,y, z):
Without loss of generality, 2 > y > x. In this case, the range
decreases by y — x or z — y, and the new range is z — y or y — z.
(3;: Y, Z) - (II - yl |y - Zl! IZ —.'I.'l) = (y_ TyZ—Yyz— 33) ongma‘l
rangeis 2—y If2—y > y—z, newrange=2—x— (y—z) = 2—y,
otherwise new range = z — ¢ — (2 — y) = y — @. The difference in
range is either z—z— (z—y)=y—zorz—az—(y—z)=2z—1y.
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For all non-trivial 3-value games, the range is guaranteed to decrease
at each step until the game transitions to a (z,y,y) (case 4) or (0,0,z) €— how do uov knoe)

(case 3) state, which both lead to the cycling case I state. Thus, all this happens ™
non-trivial 3-value games over Z will reduce to case 1 and cycle. [J

2.3.‘The equivalence of games over Z t;/ggmea_ er Q. In this Ve LaTens lobelin
section we use Lemma 2.1, Theorem 2.3, and Theorem 2.6 Yo extrapo- emptlochibies =

o o
late the behavior of {3,4}-value games over Z to behavior over Q. numbe ufl:iﬂ@.
ow fenliy o
Theorem 2.8. All 4-value games over Q converge to (0,0,0,0). gamﬂ’. N
Proof. Let |
T n2 Ty nd 5
et R L L} n-decz2 o
(dl’d'z’da‘dd,) t))

represent our 4-value game over Q. By defining a common denomina-
tor, D = d,dydsdy, we can rewrite this as the equivalent game

nydadsdy nadidads nadidady n4dld2d3)
D ' D ' D ' D '
In Lemma 2.1 we showed that for any » € R* the two games (a, b, c,d)
and (ra,rb,re,rd) have the same length. In the game above we have
Pimm % which if factored out gives us a 4-value game over Z. In Theorem
2.3 we showed that every 4-value game over Z will converge to (0,0, 0,0)
and we conclude that by reducing the game over Q to one over Z any
4-value game over Q will converge to (0,0,0,0). O

Theorem 2.9. All non-trivial $-value games over Q cycle in (0,z,z)

form.

Proof. By deduction from Lemma 2.1, we can conclude that a non-
trivial 3-value game (—’-‘J%"-‘—iﬁ, "-2%51, 3—‘31;-)&‘2) over Q where D = dydyds
reduces to a non-trivial 3-value game (ndyds, nodyds, nadydy) over Z,

which by Theorem 2.6 cycles in the (0, z,z) form. O

3. n-VALUE GAMES OVER R

In this section, we consider the properties of the n-valued game over
the real numbers. Several questions come to mind: do all real-valued
games terminate? If not, does there exist a real-valued game that
demonstrates cyclic behavior? If not, does there exist a real-valued
game of infinite length? We answer the first question (no) and third
question (yes) by proving the existence of infinitely many games with
infinite length. We accomplish this by representing a single step of
the game as a linear operator (with a restricted domain), then demon-
strating the existence of an infinite game for each value of n. Finally,
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we show that every infinite length game can be modified to generate
infinitely many games of infinite length.

3.1. Linearizing the n-value game. Given an n-value game on R,

= (ay,as,...a,), we produce each step by the transformation rule

Gy = Gy = (a1, a9, ...00) = (|ag — a1],|az — az|,...|ay — a,]). Due

to the absolute value, this transformation is not representable as a

linear operator; however, if we restrict the domain of the input to the

set of vectors (my,mg,...my) such that my < my < ... < mp, we

e 51\9.0.0" 5 can eliminate the use of the absolute value function. KG‘\_) G:+1 = { » y
ONW ""”’%ﬂbﬂ (a1, s, ... an) — (az — ay,a3 — g, ...y — a1). Notice that the last Mﬁta ure 997’ tce

element has had its operands reversed. With this “increasing order” i A
h e dﬂﬁ ” SONE o) €0
el constraint, we can write Gy — G441 as an n X n linear operator T),: capifalize ﬁ" D)
?Lfﬂrsf——‘ P
0e O S-"f‘{”“‘*e —1 1 0 0 ... 0
g u{\ the T 0 0 -1 1 0
5‘)2”\“0} Lose "=haom s tmow Bl
eafe 0 ... ... 0 -1 1|
p,.my that Yo -1 0 ... ... 0 1

i Fhere
fon bMoJ'

here? Rewsdh

3.2. Identifying an infinite length game for each n. To compute ( "'mkg
the next element in the game, left-multiply by 7;,. As an example, e

(i tht e girgee

5 4(,‘,‘@\51\% G consider the effects of Ty on G = (1,5,7,11): 51‘“%@,,,".9_\
éowte- oS mma\

-1 1 0 0 1 4

0o -1 1 o|l|5] |2

0O 0 -11 Tl |4

-1 0 0 1] |11 10

As this example shows, it is not necessarily the case that the output
Gy41 maintains the “increasing order” invariant. In general, increasing oh, o}\ bt scolsir
inputs are not guaranteed to be increasing outputs. For the special m u’H F"— ambs  hove

_case, however, of an increasing eigenvector v of T},, we are guaranteed the some len Beor

that the invariant will hold: the output v’ is guaranteed to be a scalar ] cool N
multiple of v because Tv = Av = v'. A scalar multiple of an increasing .
sequence is an increasing sequence.

If our intial game v is a real non-zero eigenvector of T;,, then we are spe.ﬂ check
guaranteed that T,,v = Av # 0. In general, for all k, T¥v = \fv # 0,
so real, increasing eigenvectors of T;, are guaranteed to generate infinite
length games.
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To demonstrate that there exists an infinite length game for all n,
we must demonstrate the existence of a real, increasing, nonzero eigen-

vector/value pair vy, A, for all n.

doi
wh,q% art Sw

Sn=Tn_AIﬂ=

7 3.3. Establishing and bounding a positive real elgenvalu/e qun &m& ext

~-1—A
0

7

a1
ﬁ’ﬂ v

0
0
0

—t

1
1A

( ' m‘mz;aﬁxpanding det(S,) by cofactors along the bottom row, we see

det(S,) = —1(=1)1+"

(1=2)

[—1— )\ 1 0 0
0 —1-A 1 0
0 0 -1-X 1
0o .. 0
| 1 0

1 0 0
e 1 0
0 -1-x 1
0 0

—1-A 0
( 1)n+n ‘ —1'_’\ .] '
0 0

-1-A1

0
0

0

=1-=A

.|.

The determinant in the first term reduces to 1, and the determinant
in the second term reduces to (—1 — \)"~!. The characteristic polyno-

mial of T, is then (
we have

(-1 + (-1

(- 1)2+n+2 ( )

k=0

- )" -

l)n —1- k( /\)L AZ

_pypee +Z( iy

-1
(_1 24n 3 (_l)n—l n ,\k - /\k+l =0

n—1

(-1

n-1

n—1

k=0

. A)n—l =0

( N rtear =0

> (” . 1)(—1)“-‘A’°“ =0

—1)#7 4 (1= X)(=1)*"(=1-X)""! = 0. Expanding,

We examine the pattern of signs on this polynomial to determine
the number of positive roots. In each case, A\ = 0 is a root, so the
coefficient on the constant term is zero.
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When n is even, the sign pattern is (+,...,4,0,—,... —,U).

2
When n is odd, the sign pattern is (—,...,— 0) < oaooa
Each case has exactly one change of sign, so thele exists exactly one
positive real root for each characteristic polynomial by Descartes’ Rule
of S'gns [1]. Let this eigenvalue be A,. We claim that 0 < A, < 1 for all
see this, consider the method for finding a bound on the largest
pomtwe real toot of a polynomial via synthetic r11v151ot\i’:/d1v1d1ng a
polynomial P(z) by (z — k) will result in a polynomial with all positive
coefficients if k is an upper bound for the positive roots [2, Eqn. 15].
Dividing each of the characteristic polynomials by (A, —1) (easily done
symbolically on a CAS) yields polynomials with all positive coefficients
for all n, which demonstrates that 1 is always the least integral upper
bound.

3.4. Identifying an increasing eigenvector. To determine the cor-
responding eigenvector v, = (ay, ag, . .. ay), we solve (T,— A1) vy = 0.
This produces the following set of equations:

(—“1 = )\n)al +ay =10 (1 + )\n)al = a2
(1= A)az+az=0 (1+ Ap)ag = as
or |'I
( 1- n a’ﬂ.-—] + ay = 0 (1 S s /\n)an—-l = On ‘PU'V)‘E,{U“%%'E oo Q_)
1~ n)Un =0 1- )\11 = a‘ é/ A
( )a — a1 ( )a'n ay d\‘ﬂ.?‘.&b{‘ ME O

Arbitrarily, let a, = 1. This forces a; = (1 — A,), which forces

2 = (1 = A)(1 4 An). In general, for 1 < 4 < n we have a; =

(1—=A.)(1+ X\t An eigenvector that corresponds to the eigenvalue @
An is thus 40

{orivy mﬂ‘l it o )

oY G“P ”)é’

enct ghithis

B ] whith - ofpears,
(1 = /\n)(l ++ }‘11)
(1= M) (1 + An)? < b,
(1= M) (14 A,)" 2
1 e )
= =% - \}|J hen Ve, colon Ng, W l‘.i&‘x}]
We verify that this elgenvector is in increasing order for all n?\gwen & j‘ 3 6
0 < M < 1, we have (1 — M) (14 2n)% < (1= X)(1+ Mp)*! because notfor 9% ok bt
(LA < (1+A0)E+ and (1= An) > 0 when 0 < A, < 1. Additionally, "% %% iefireas]
we have (1 — \,)(1+ A)" 2 < 1 for all A, < 1 because (1 — \,)(1 +

An)n—l =1, |
0\;‘61& bi‘ﬂal’ﬂ'na "'mc»?{a
acroes the of a
Jine. As Lt eciking
step, Qo od cuch bredlks
4 n)d« .;Lm o1l o VNG

\ L%Q\‘F {_‘,.S‘ f"ﬂwﬁff‘d
Q\M mw’mtf Lmvn ﬂné O lurs@
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Empirically, for the n = 4 case, we have \; ~ 0.839287, so the eigen-
vector which generates a game of infinite length is approximately G =
(0.160713, 0.295598,0.543689, 1). The progression of this game after ¢
timesteps results in Gy = (0.839287)*-(0.160713,0.295598, 0.543689, 1).

3.5. Generating infinitely many solutions of infinite length.
Our choice of a, = 1 was arbitrary - the eigenvector we obtained was
parametrized only on a,. Choosing other values of a, > 1 will lead to I

cool

, infinitely many such solutions. g
s Foek c“’{;Ljf:‘w To see this a different way, consider w = (ay, ay, ... a,)+(k,k,... k) = <— “’J_b"j ﬁ%’ H:‘i,_.
é:‘m(l[al‘f g,;”"’?u’m s —|a+k for some constant k. Tw = (((az +k) = (a1 +k)), ((as + k) — (a2 +  F* 0, 4 deﬁf‘;" b
+hu“f: wnelien ¥ k), ... ((an + k) — (a1 + K))) = (a2 — 1,03 — ay,..., 80 — ay) = Ta. OVOCILOP‘: w, o, ond k.
&3"}‘5'L i+? iApplying the transform 7' on some starting vector plus a constant A leas) <o *Hhey e
|yields the same result as applying the transform to the starting vector: Eitee™ /é J

[T(a+k) = Ta. We can choose any value of & > 0 and create a different

{ game of infinite length from our starting game. V' cfﬁm v}'f’ﬂ (E bold
Finally, we can apply any of the group actions from the symmetry | N 3’ 3

ﬂ:ee s Aa_: embe

e only clwes of
n:ie M‘egf ar

re e -, group of the square (Dg) to any 4-value game and preserve its path ] v'“ g e C ala p
|

ht |
atm? Do o knsas” length because the actions of Dg will preserve neighboring vertices. conPlsiov:.
. ' This generates another infinite family of solutions: all cyclic rotations
! and horizontal /vertical/diagonal reflections of our starting vector.
I

4. COUNTING UNIQUE 4-VALUE GAMES OVER Z Swhal do 7MF§:” by |

s len
I comp Jam . In this section we consider a combinatorial approach to detEEJZ:;m“ are the
misvnders) "*T the number E"gﬁ%ses f a 4-game over the integers from ﬁ,{/m foro opres
5&”&} &’3 af;}:; i g oy _45 0ton— e1 or future simulations of empmcal cases, we would like to  e9usvm e

wirde a[ the Y 15 easy D€ able to quickly determine the total number of games required for (o, \2 ‘3\“”(1 ity 48 3 |
o ,,5 s (hecavee ty-g(r snnula.&mn One may initially think that for any value of n we simply (l!z}g) % "7‘(1 L5 2, .
het m o posifion of have n* possible starting states as we can choose n numbers for each of How &bww,_

emphwsi's withy the the four positions. This approach, however, fails to take into account (O. n N 0,2 3;5?
Se nkenee)., ,4.,&,,._ »the symmetries of Dg discussed previously in section 3.5. It is useful St Lemm 2.1 S

for our analysis to recall that the number of ways to choose k elements

y.u#—w—‘sm# <o x from a set of n for n > k is given by the binomial coefficient |

ht ysu wenre oskin |
thE verd nalural goestion e i . .
' k (n — k)k! d !
" How vaan a,wwa'wce'. m‘fdﬂw ‘re devng
clussss Gre ' fhere of Theorerh 4.1. The number of unique 4-games over the integers from mooi ?j’r i‘; ?-; "‘i bﬁm‘
I%e(, ame. \ o 0 to(f?_l_.—Das a function ofln is given by 7‘7-' 5 mb;:;ﬂwﬁafofc
01,2,,., 6 N-V) " . zalyiho ¢ 1S
' w},mﬂ:uj q’rmu) ?besﬂbn s oske.df f(n) = 2 (n* + 2n® + 3n? +2n) p smﬁor%nfﬁﬂ

iii?jee.r e ;a‘mpf'e * Proc f‘Oﬂf The proof of f(n) is by cases. Let k deﬁrﬁ the number of umque&——*"J
gy K“ aps integers in a given game and g(k) be the number of unique initial states

oxemples o ensune _
Coﬂce‘}ﬁt}al umlu‘-.'-'-l{mno!mct ’Lna‘i eleoy u!ﬁ k Mas Mmemas,
07£ Mf— Uegl(fb"’) b l‘”%“*—n’ &{{ Oﬁg‘ﬂ% i‘lllf, ——"’ZUD{JIO{ fﬂ&fP.
JI‘SCU;5({) i 1o ng ﬂb.—*i"ﬂl ,

}Bm pfe.s con rmwwqoma,}\e,

aﬁ)‘,cu’a’aﬁ efloeren fly @ robostyy
bec‘cwsé fh can ealeh’y cocre cl" mreunole rs}nnolm g .


http:p.,yje.rJ

b oo

7] . a
d cle b
We worth e lud\'ﬂj j 5\ — | _\:;

e

_ T o
(e8) conceptual extplonpbion " o c )\
o Fapmaal P\"G'S!M}gho.n c . '
% "'I" t“e-audel"s d-: YIDA GAO, MATT REDMOND, ZACH STEWARD

un erstaading, ,

s s theconti PCL
% QO é %(k\) WP ?lor a given k. We consider the contributions to f(n) for each gase ofjk

and simplify for the explicit expression of f(n).
1. k=4
When k = 4 we are considering a game of the form (a,b,c,d).

First we note that there are exactly ()}) ways to determine the
unique integers a,b,c and d. Given the 4 integers we then have
4! possible orderings. We recall, however, that under symmetry of
Dy there are exactly 8 wa,?fs to order the elements (a,b, c,d) that
represent the same. initial state. There are therefore exactly

ﬁ'!;;‘:e?” P 9(4)=4!5(;4) =3(4)

unique games for k = 4.

2. k=3

For k = 3 we consider games of the form (a,a,b,c). First we
have exactly (;‘) ways to choose the distinet elements a,b and c.
We next have 3 ways of choosing which of the 3 elements will be
repeated. Now we note that the 4 elements can only be arranged in
1 of 2 possible configurations by considering one of the non repeated
elements. Any possible configuration of the elements will leave the
unique element b with neighbors of a, a or a, c. We then have exactly

s9=25() o)

unique games for k = 3.

3. k=2
For k = 2 there are actually two sub-cases to consider.
(i) Games of the form (a,a,b,b)
In this case we will first have () ways to determine the-unique
integers a and b. Next we note that there are only @q ossi-
ble unique configurations of these elements, namely (a, a,b, b)
and (a, b, a,b). 2 (;‘_\

(ii) Games of the form (a, a,a,b)
In this case we again have () ways to determine the unique
integers @ and b. Next, however, we have to choose which
of the integers a or b we wish to repeat 3 times, which there
are exactly 2 choices. Finally we note that the only unique
configuration is of the form (a,a,a,b).
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40
Each of the two sub-cases contribute a. of 2(’2‘) and we con-
clude that there are exactly

()

unique games with k =

4. k=1
In the basic case where we have a game with only 1 unique el-
ement it will be of the form (a,a,a,a). It is obvious that any
arrangement of the 4 elements will result in the same game and be-
cause we have exactly n choices for a we get that there are exactly
n games of this fom’@
o

" g(1) =mny,

The total number of unique initial states is then given by

- Fn o)) )

By substituting in the definition of the binomial coefficients we have

fin)= g(n -1)(n-2)(n—-3)+nn—-1)(n—-2)+2n(n-1) + n@
If we expand each of the terms and collect like terms we find the number
of unique initial states is given by

f(n) = (n + 2n® 4 3n? +2n)o

5. THE DISTRIBUTION OF GAME LENGTHS FOR LARGE n

In this section we make a few empirical observations about path
length and consider their implications to gain a better understanding
of the dynamics of the 4-game over Z. We first consider the effect
of symmetry on the frequency distribution of path length. Next we
evaluate the tightness of the bound on path length given in Corollary
2.4 with the computed results. Finally we compare the distribution to
the normal probability density function.
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nvaru- &
5.1. Accounting(for symmetry. In section 4 we derived an explicit
expression for thejequivalence classes of a 4-game over the integers from
0 to n—1. This, in fact, raises an important question when considering
empirical results. Is it really worth it to account for symmetry when
T mof’ gdp s uﬂm’f approximating the distribution of path lengths for a fixed n? To answer

Uﬂu ve esunty {; 2N s this we let E be the event that the initial state of our game is composed
D, e mun} y.}m-} of 4 unique integers (a, b, ¢, d) and subsequently consider the probability
ﬁ“— 'om{)u ’ .f’y P(E) if we do not account for symmetries about Dg. In order to create
uw;f’ @ e 7 8 game of this form we will have n choices for a, n — 1 for b and so on
Uﬂ
o rolbah !J}/ nmt giving us
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I(& }Jﬂt j\ R"' 'k?ted Ob 5 amé d T et e unique
e (T . e et
The roboob |‘HZ/ '“"“L& e note thgt both the numerator and denominator are dominated
Y um"-r’e- int 15”‘5 i by a term of 2%and that the limit for very large n is then given by
ne '
n the 8703’1’?},: AL ' 4 '
< of P - lim P(E) =1
CI e (& c n—co
Wi € SN T ‘
-3 F

Intuitively it makes that as n grows, we become increasingly more
likely to choose 4 distinct integers to start our game. From section 4 we
know that any game of the specified form (a, b, ¢, d) is in an equivalence
class of size 8 meaning that if we do not account for symmetry on OJ ﬁw oj
average we will be over counting the number of path lengths by a factor é""’ ‘0

of 8. Now, however, note the relationship between f(n) of section 4 seen ﬂ mu ﬁf
and the total number of games n* in the limit b)’ °°T,§ r pesy
T 4D Wit
lim i i nﬂ,‘i olis
noo nd 8 "'IW}( p'ww"wﬁ "

So, although we are over counting the vast majority of path lengths oh,Tin mnﬁ:s E(J,
by a factor of 8, we are also over counting the total number of games by ‘ ﬁ sen 't Haese fhe
a factor of 8. The result is that for large enough n we see no qualitative  spyme # :nﬁ
' difference in our distribution results and it is therefore not worth the
i extra computational costs to eliminate the symmetrical cases. As an
/ example of this, consider the two events A and B such that A denotes
[ ,,\..H m‘f sU *€ | picking a game of path length 4 from the set of all games not accounting
,\qc\«aﬂoj ‘51,,,:9, for symmetry and B denotes picking a game of path length 4 from the theorehreal or
uemtf, # O set of all games with symmetry accounted for. (The probabilitytthat exper “"‘“""‘" o
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most 4[log,(max(a, b, ¢, d))], but we would like to inyestigate just how
good of a bound this really is. In the followingﬁa lots we consider
the distribution of length over the set of paths computed while not
accounting for symmetry for reasons mentioned above. Figure 2 plots
the path length distribution for n = 64,128, 256 &demonstrate the
very close match these distributions have for increasing m.-

- A nﬁsmﬂ"ﬂg
First note that for n = 128 we have a}:_%sf max(a, b, ¢, d) = 127 and
therefore have a path length L at most 4-7 )= 28, but we are observing

a maximum length of only 15. Similarly, for n = 64 we observe a
maximum length of 13 compared to 24. Furthermore when we increase
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n to 256 and have a new bound on L of at most 32 we observe that in
reality we have only gained one more iteration on our maximum path
length which is now 16. The reasons for this are non-trivial, but it
seems to indicate that our sequences are converging to (0,0,0, 0) even
[a;sj;gj ' than thﬂ% given i Theorem 2 3

Py v oy 1™

L g:\e.-; ¥ ofon
5.3. Probability. If we let be the pa.t% length, we can comput the
mean and variance of our observations such that S e %L% wll
E[X] =" p(z) -z = 4.93192197 Ef“?”'mﬂi‘l”i
xeX

2
Var(X) = E[X?—-(E[X])? = Z p(z)x®— (Z p(x) - x) = 1.34398723
zeX zeX

In Figure 3 we now plot the discrete probability distribution of the
path length, and this time we include the continuous distribution for a
normal random variable with the above specified mean and variance. It
is reasonably clear that this data does not follow a normal distribution. do uav howve ond
Future explorations of this topic may consider modelling the distribu- reodon b tHhi ;f,
tion as a mixture of gaussians, or perhaps as a mixture of Poisson
distributions. \

FIGURE 3. Game Length for n = 256 vs. N(4.931,1.344)
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We see that the path length data has a much larger nght, skew than
a gaussian, and maintains a bimodal shape. In Figurg'4, is 1}1t019%t-
ing to note that a large number of games converge to-the-final state
(0,0,0,0) after just 4 steps - cumulatively, more than 50% of these
games terminate in 4 or fewer steps, and 91% terminate in 6 or fewer
steps.

FIGURE 4. Cumulative Distribution of Path Length for
n = 256
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