
TOSSING A COIN 

J.M. NA.TER, P WEAR, 11. COHEN 

ABSTRACT. We study the properties of a function t hat takes x E 


[0, 1 J as input and determines the probabilty t hat the number ob- ) 

tained by writing a decimal point and then tossing a coin infinitely 

many t imes, writing a 1 after the point when the outcome is heads 

and a a when the outcome is tails, is less than or equal to x. 


1. I NTRODUCTIO N 

The result of n tosses of a two-headed coin can be represented by an 
n-digit binary number in the interval [O,l J. The kth digit is a if the kth 
toss comes up tails and 1 if it comes up heads. These representations j'ldt-~ 
correspond to rational numbers With denominators of the form 2k for ,) ~ ...... .P-e~ '. 
some k, a.k.a. dyadic rationals. Similarly, an infinite series of tosses ) __ _ b,~ R.i<p'-) ,;., 
gives us a binary representatiOn of AllY real number in the interval [0,1 J. ~ f-l...f-o:t-.. 
Now let y be the outcome of an infinite toss . For any given real number 
x E [O, l J we would like to determine the probability that y S x and <ef~ ~ 
we denote this probabilty by jp(x) where p E (0,1) is the probability ~ "I<-,"" b..o.r-, 
that a coin toss comes up heads. 
For an idea of how to go about compute let us compute jp(t). The 
binary expansion for ~ is .01. Now we consider the possible outcomes 
of an infinite sequence y of coin tosses. F~he first must 
necessarily come up tails, which contributes 1 - p to the probabili ty. If 

.0\) __ _the second toss comes up tails the inequality is still satisfie owever 
if it comes up heads, for the rest of the inequality to be sati fied the 
remaining tosses must represent a number less than or equal a the 
remaining digits of ~, which also have the form .01. So then CO'1-IW>.. .rpk~. 

jpG) =(l-P)(l-P + PjpG) 

Solving that equation we get 
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The follow images should provide some intuition about the behavior of 
jp. 
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FIGURE 1. Graphs of jp for p = .1, .2, .3, .4, .5 
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FIGURE 2. Graphs of jp for p = .3, .7 to illustrate the 
relation between JPand !I -p. 

mailto:9xtj~AaA.t@~~M$~~~~~~ij"~'~~~.~i"~'~~~~'~Q,e'~~jf"~'~'Qq


TOSSING A COIN 3 

For most \"alues of p, the function jp is pathological , but it has many 

interesting properties. In the following sections we prove continui ty of 


( jp for p E (0, 1), show that jp(x) is not nowhere-differentiable and give 

a definition of arc length for jp. 

Sections 1, 3 by J. I\1. Nater 

Sections 2, 6 by P. Wear 

Sections 4, 5 by 11,'1. Cohen 


C. d'\-1. L-e ~f- b~l...: 
<.Jl.....t C.fl., relc."~.r(" 

2. CONTINUITY •.<r>+
\..., ~ IV.!. L"""" 

Given a binary representation of some number x E , 1], the map- s-e ~ '- 6.­
ping x >-+ i corresponds to inserting a 0 etween the cimal point and LJ'..<>t ~1.LN<=? 
the first digit of x . Similarly, x >-+ i + 2 correspo s to inserting a 1 - fk ' U' 
between the decimal point and the firs digit of x. We ~introduce ~..i ,..Ie \"(l 

two functional equations that give us method for evaluating jp on )c"-~ ~ 

any dyadic number. Given a dyadic x, for an infinite flip sequence to '\" 1v~J..,..... 
be less than i the outcome of the first toss must be tails and the rest t<..e. {t- l:tW Jy 
of the tosses must represent a number less than x. T he probability of I ._ 
the first toss being tails is (1- p) and the probability of the rest of the ~ ~~k_ 
flips being smaller than x is jp(x) , so we have 

(1) jp G) = (1 - p)Mx), 

,)... whiCh immediately generalizes to jp(frz) = (1 - p)kjp(X) ./or the 

infinite toss sequence to give a number smaller than ~ + t the first 

toss can corne out either heads or tails . If it is tails the sequence will 

necessarily be smaller. If it is heads, then the rest of the sequence must 

gi ve a number smaller than x, and so we have the second equation: 


(2) jpG+D = l -p+pjp(x). 

These two functional equations allow us to calculate jp for any dyadic 

number , since every such number can be represented by a finite binary 

sequence (preceded by a decimal point of course) ending in a 1, and 

so we can st8Jt with jp(. l ) = (1 - p) and keep iterating (1) and (2) 

depending on the bits until we reach the desired dyadic . 


Now we are ready to prove continuity. We will use the two equations 

and monotonicity, which follows from the basic measure-theoretic ar­

gument that if y > x the probability that a toss sequence is less than y 

cannot be less than the probability that a toss sequence is less than x. 
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Because we have monotonicity it suffices to show that for any x and 
any E > 0 there are numbers y < x and y' > x such that Jp(x) - Jp(Y) < rto" - flutv 
E and Jp(Y') - Jp(x) < E. Without loss of g;enerality aSSlIm e p > 1 p. _ \oJ • 

For any x E (0, 1) and for any positive integer N there exists n > N 

such that the nth digit of x is O. If this were not the case then there 

\ 'ould be some point after which all the digits were 1, in which we 

could use the substitution .01 = .. 10 to obtain~~: ~'ed form. Now 

let y' = X + 2- n , where the nth dIgIt of x IS O. toss sequencer 
which correspondl to number ~ler t han y' but greater than x 4e- ~ k ~ t""t 
Uwse Fel "hidl the first n - 1 'fagree with the first n - 1 digits of 
x , so because p :::: 1 - p we have Jp(Y') - Jp(x) ::; pn- l As n approaches 
infinity Jp(Y') - Jp(Y) will approach 0, so given any E > 0 we can always 
choose an appropriate y'. 

We can find y < x similarly, as there will be infinitely many Is in the 
binary expansion of x and in this case we want to choose a 1 arbitrarily 
far down the binary expansion and flip it to a O. Gontinuit) fellew& CJ" ~,,~o><~ 
HlllIlediately. 

3. DIFFERENTIABILITY AT X = ~ 

G
Although a thorough characterization of the set'iYon which JP is dif­


ferentiable is not available yet , we at least know JP ~ot nowhere­

ifferentiable. We prove this by showing differentia~ at x = ~. 


First notice that the binary representation of ~ is .01 , so that the prob­
ability that the outcome of 2n coin tosses matches the first 2n digits of 


.01 is pn(l_p)n. Now ~erivative limit lim Jp(x + h) - Jp(x) 

h.....O h 


by J;(x). As we did for continuity, we can choose a 0 arbitrarily far 

down the binary representation of~ . Now let the (2k + 1 th d" e O, 

so that setting h = 22&+1 and addin to x will flip that digit to a 1. 

TheJ~~can 0 nd I'W by 22k · (p( l _ p))k = 2·4k .(p(1_p))k Also 

notice b the inequality arithmetic and geometric means we have 


p + (1 - p) > V (1 _ )
2 - P P 

2'1 :::: Vp( l - p) 

41 :::: p(l - p) 
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which, because as k approaches infinitv h approaches 0, is equiva nt 
to saying f'( ~) = O.Un the case p = ~ the function h(x) is e.xactly tIe 
line y = x which is also di fferentiable:(}- f rlbc04~ ~rl:: . 

4. DEFINING ARC LENGTH 

J\.n interesting question to ask about &. is its t.ota l arc length. In 
order to rigorously investigate this, however, we will need an actual 
definition of arc length. The traditional definition of arc length, as 
seen in introductory calculus courses, is defined using the derivati\"e of 
the function: 

Definition 4.1. Let f be a function defined and continuously differen­
tiable on [a, bj. Then the arc length of f on [a, bj is 

(3) s = [ VI + f'(x)2 dx $".:. ~-t- B~~'~-t-
This definition clearly does not work for f;:;;;;;:fp is undifferen­

tiable on a dense set of points in its domain. However, there is a natural 
definition of arc length which applies to all functions (although it may 
be infinite). To introduce it, we must first define a partition: 

Definition 4.2. A partition P of the closed interval [a, bj is a finite 
sequence of n points Xi satisfying Xl = a, Xn = b, and Xi :::; Xi+! for 
all i where both are defined. The fineness of P , F (P ), i ~ defined as the 
largest value of Xi+! - Xi · [a, bj is the set of all partitions of [a, bj. 

A partition can be viewed as a way to split [a, bj into the subintervals 
[Xi, XHlj. Note that this notion of a partition is also used in the defi­
nition of Riemarm integration. We define a notion of an approximate 
arc length using a partition: 

D efinition 4.3. Let f be a function defined on [a , b], and let P be a 
partition of [a, b], consisting of Xi for I :::; i :::; n . Then the P- length of 
f is: 

n - l 

(4) LpU) = L V(Xk+1 - Xk)2 + U(Xk+rl - f(xk))2 
k=l 

The P-Iength essentially gives an approximate arc length , defined 
with the granularity given by t he partition. It is the arc length that f 
would have if it consisted of a collection of line segments , eaw covering 
a segment from P , but with the correct value on the endpoints of each 
segment. We can now define the actual arc length: 
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Definition 4.4. Let f be a function defined on [a, bJ. Then the arc 
length of f on [a, bJ is 

(5) 

The motivation for this definition is that the P-Iengths define the 
lengths of arbitrarily fine approximations to f, but the P-lengths should 
always be at most the actual arc length (since lines are the shortest 
path between two points). In fact, this supremum is also a sort of limit: 

Lemma 4.5. Let f be a function defined on [a, b], with finite arc length 
s defined according to 4.4. Then for any f , there exists a 0 such that 
for all partitions P with fineness at most 0, Is - L p I < €. ., • • L _ 

T4:r - ~ dnc..~ d_ ~ . ~ ,la.~'-' Le~ <S"i11LlLw . 
~~ . .. 'tFc:r - ' 

~cM. J 
This lemma can be proved with a relatively simple bounding argu­~ ment (essentially, given a P with arc length close to the supremum, 

all sufficiently fine partitions must have arc length almost t hat of P, 
while they are still bounded above by s). The detailed proof is omit­
ted here , since it is not t he focus of this paper. The lemma could be 
taken as giving an alternative, possibly more natural defini tion for the 
arc length of s; this definition is very similar to that of the Riemann 
integral. 

Note that both of these definitions are equivalent to 4.1 for continu­
ously differentiable functions. This can also be proved relatively simply 
(by showing that the value of VI + f'(X)2!:::.X is close to V(!:::'X)2 + (!:::.y)2 
for sufficiently fine partitions). Again, the detailed proof is not given 
here. 

Finally, consider that V(Xk+1 - Xk)2 + (J(Xk+l) - f(Xk))2 is upper­
bounded (by the triangle inequality) by (Xk+1 - Xk) + I! (Xk+1) - f(Xk)l · 
In the special case when f is monotonically increasing, f(Xk+1) ­
f(Xk) is always nonnegative, so we can drop the absolute value there: 
V(Xk+I - Xk)2 + (J(Xk+l) - f(Xk))2 ::; (Xk+1 - Xk) + (J(Xk+1) - f(Xk)). 
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That can be used to bound Lp(f) for any partition P of [a , bJ: 

Lp(f) = L
n-l 

V(Xk+1 - Xk)2 + (f(Xk+l) - J(Xk))2 
k=l 

n-1 

(6) 	 k= l 

n - l 	 n-1 

= (L Xk+l - Xk) + (L J(Xk+l) - J(Xk)) 
k=l k=l 

= (xn - Xl) + (f(xn) - J(XI)) 

= (b - a) + (f(b) - J(a)) 

Since the arc length is the supren@ of the L p , that gives rise to the 
following lemma: 	 (.N\<.. 

Lemma 4.6. Let J be a monotonically increasing Junction defined on 
[a, bJ. Then the arc length oj J is at most (b - a) + (f(b) - J(a)), and 
in particular is fin ite. " t\.... ., u f .\'~ d""" 

"p, ' r­
"""~ li-...:"9. .....l:i: ",,1.., 

5. ARC LENGTH OF JP / T..., 1-0 ..... j".f"o(..-ll-w ! 

We now have the machinery to investigate the arc1ength of the JP 

on [0, IJ. For the special case of p = ~, the arc length/is clearly just /2, 
since it is a straight line. For other I'allies of p, w;('still know that j~ is 
monotonically increasing, and that Jp(O) = 0 and Jp(1) = 1. Then by 
4.6 the arc lengths must be at most 2. / 

In this section, we will show that that boun is in fact tight: the arc 
length of JP is 2. TIllS, on its face, is somewh , surprising. Despite the 
fact that JP is continuous, its arc length is t e same as it would be if 
it were a monotorlic step function covering 1e same range. 

In fact, the proof can be interpreted as, owing that JP is "almost\ 	 a step function" in that it be broken down into interval which , 
are mostly completely fiat, but where the actual increase of JP mostly ~~ .... 
happens over intervals that are very stl!.!P~ost vertical. ~ ~.,e f 

We will \lo~ bouwl. the Pn-lengtBs~lor particular partitions Pn,ft:. . 
~ P consists of the points Xi = ';1for 1 ::; i ::; 2n + 1. These ~ I"",",l.:;t:-'-r'n 

have the property that Xi+l - Xi is always 2~: they divide [0, IJ into 2n c,.. 
equal segments. To obtain bounds, we will estimate the distribution of ~ o{\.,es tf. -) 
J(Xi+ I) - J(Xi). ~ ~ 

The Xi (for 1 ::; i ::; 2n) are precisely those numbers whose binary] 
expansion is all zeroes after the first n places after the decimal point. NcJt'C~ 

~~ 
III " 
~"~*~©IDu'?©.X0~©iu.ubo~~~1~'~~_.~8H@•• X~g~$X~~e~!§~x.~A~~~~~©X~'~w~~~~~~ )D 
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To examine J(Xi+l) - J(Xi) we define the function 

8 

(7) 

Lemma 5 .1. For all nonnegative integers m, all y in [0,1) such that S'et. 10 
2my is an integer, D(y , m) is pO(I- p)b, where a is the number- oj ones 1)('1, .. ) == 'p~LI') 
in the bina~y expansion oj yJ3tp tQ ills ?+Ii'" p/e,eB} and b is th:;.number ..i'L.c.Jt:ki pl"",_ 
oj zeroes. l i' t Gr' " ~ tQe tbl..4.s.l"...., ;). J! v ill --J 

t3.e~f- ' Proof. We will prove this by induction on m. If m = 0, it is trivial: y 
~ <.l-bmust be 0, and D(O,O) = M l ) - Jp(O) = 1 = p0(l - p)O, as expected. 

• vi 	 For m > 0, we will use the functional equations (gi"~n ill. thg io­ et;, t tl.u.(j~ 

E 
~ .<:= trodjlGtie~ that apply for all x in [0, IJ: M~) = (1 - p)Mx), and 

'J Jp (! + ~) = 1 - p + PJp(x). -L.?,k.k.Jt...:D 
y..v First, note that if y is in [0, !), y + 2~ is in [O,!J (because hath of 

~~ them, when multipli@d By 2m, a.re-ffitege~iff€rby--l-; they 
I~< \-oGU. ~. 	can't skip QUill' tlc!e iBtegel 2m - . ). Otherwise, both must be in [!, 1J. 


The former case corresponds precisely to the first bit after the decimal 

place being 0, and the latter corresponds to it being 1. T14s ,+'e.slft.j.L.1" 


• In the former case, 	we can apply the first I'u onal equation dAJ lA. ~ 

with x = 2y and x = 2 (y + 2~n) to get f y) = (1 - p)M2y) / P d 
and JP (y+ 2~") = (1- p)Jp (2y+ 2";-1) JP (y+ 2~) - My) = ~ J \ 
thefi comes out to (1 - p)M(2y, m - 1). Replacing y by 2y and \\..~~ ? 
m by m - 1 is precisely stripping the leading 0 from the binary tv\. ""--::b . 
expansion, while otherwise keeping the numbers of zeroes and 
ones up to the mth place the same. The requirements for the . L ~ 
lemma are preserved. Thus, if the lemma holds roJ-ffl---l:, ~ -)\:...e ... ~ 
M(2y, m -1) "ilRle pO(I- p)b-I, so M(y, m) ~ pO(I_ p)b. ~f ; .. '" 
satisfyill.g the lemma. 

• 	The latter case is similar. Here, we apply the second functio~ 
equation with x = 2y - 1 and x = 2 (y + 2~n) - 1, getting 
Jp(Y) = I-p+pJp (2y- l ) and JP (y + 2~) = I-p+pJp(2y-l+ 
2";- 1) ' JP(y + 2~) - Jp(y) then comes out to plVJ(2y-l, m-l). 
Replacing y by 2y - 1 and m by m - 1 is stripping the leading 1 
but otherwise keeping the bits the same, and the requirements 
for the lemma are again preserved. Thus, if the lemma holds 
for m - 1, M(2y - 1, m - 1) will be pO-I(l - p)b , so M(y, m) 

~~~ will again be pl(1 - p)b , again satisfying the lemma. 

~ '1~»( C'The lemma then holds for m = 0 and holds for m if it holds for m - 1, 
#"J-v so by induction it holds for all m. 0 

~r~ 0 . 

";)~ . 	 Ya-J c.cNJl.2~cR J:.., r~ '"'t1.;.( ~-k..~~L t<...Q.l"V. r~D 
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This lemma implies that !(Xi+1) - !(Xi) is pa(1- p)b, where a is the 
number of ones and b the number of zeroes in the binary expansion of 
Xi, up to the nth place. If we define 

p if the kth bit in the binary expansion of Xi is 1 
(8) d ­

k - { 1 - p if the kth bit in the binary expansion of Xi is 0 

then we can alternatively write 

(9)L 
n 

w, ,= th'" "t '~ y~v-.rr;:t( 
(10) log2(f(x,+1) - !(x,)) = L log2 dk 

k=l 

We will now look at Xi as a random variable, with i chosen uniformly 
out of the integers from 1 to 2n. It is important to note that each digit 
in the binary expansion of Xi is independent of all the rest, so the dk 
(and log21{!j) are independent random variables. Furthermore, each of 
dk (and each of log2 dk ) has ~ same distribution (since the probability l 
of each bit being 0 is alway). We let f.I be the mean value of log2 dk 
and 172 be the '·ariance. No e that the probability distribution of an 
individual dk does not depend on n, so neither do f.I or 17. Since the 
probability of picking each value is ~ , 

1 
f.I = 2(log2P + log2(1- p)) 

= log2 Vp(1 - p)
(11) 

< Iog2 ~ (by AIi1:r..G~1im'Re~qiUu-a:aliiittyy) 

= - 1 

Since f.I < - 1, we can then pick some real number r such that f.I < 
r < - 1. We will take any such r (again, not depending on n). 

We need not calculate 172 explicitly; what is important is that it is 
constant over choice of n and that it is finite (since it applies to a 
discrete probability distribution). 

Since IOg2(f(Xi+1) - !(Xi)) is the sum of n independent instances of 
the same probability distribution, it has mean nf.I and variance n(J2. 

Thffi ,,. ,= .pply Ch,b",,,'" '''''l"oJ'ty~rul th, pmb.b'bty 
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that IOg2(f(XHl) - !(Xi)) > nT: Chebyshev's inequality says this prob­
ability is at most 

(12) 

':Qicll for any E> 0, there exists an N such that if n 2: N , that 
probability will be at most ~: we can simply set N to ~ . r"-'". 

~ UNotably, exponentiating both sides shows that this is actually bound­
ingtheprobabilitythatf(xi+1)-!(xi) > 2nr. Since" < -1, limn-+_oo 2

n(r+l) = 
O. Applying the defi nition of a limit, this means that fo r any E > 0, 
there exists an NI such that if n 2: N I, 2n(r+1) < ~ . 

Given any E > 0, we will then pick n as max(N, NI). We divide the 
i (for i from 1 to 2n) into "good" and "bad" values: "good" values 
satisfy !(XHl) - !(Xi) S 2nr while "bad" ones do not. For each "good" 
z, 

--L. ~ "'- ai ~(13) 

< iTn / cGff-; ~ .:;-~ 
Since there are only 2" values of i, summiftg this over -ail good'it;,es / ') 
less than ~. On the other hand, summing !(XHl) - !(Xi) over all i ~// 
gives ! (X2n+l) - !(Xl) = L Thus the sum of !(XHl) - !(Xi) over all 
bad i E~}J 1 -~ . Furthermore, J(XHI - Xi)2 + (f(XH1) - f(Xi))2 2: 
!(XHl)- f(xi) by the triangle inequality, so the sum of yI"(XLi-+-'l--'-X-'i-c,)2;-+---;(-;;!-;-(X-i-+Tl)---f-;;-;(~X""i)=)2) 
over all bad i is greater than 1 - ~ . 

Since all i were chosen with equal probability, the number of bad i is -f1>'::~ 
equal to 2" times the probability than an i is bad, which is less than ~, 
so this number is less than 2n~. ~ the number of good i, is greater 

than 2"( 1 -~). Since XHI-Xi = 2- n
, J(XHI - Xi)2 + (f(XHl\ - f(Xi))2 

is always at least 2- n for any i , so the sum of this over all Xi is at least 
1 - ~ . ~ the sum of this over all i , good and bad, is at least 2 - E. 

Tills sum is precisely the Lp. T hus, for any E > 0, the arc length 
must be at least 2 - E; thus the arc length must be at east 2. Since it 
cannot be > 2, it must equal 2. 

Theorem 5.2. The arc length of fp , fOT any p i-~, n [0, 1]' is 2. 
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6. F URTHER POSSIBILIT IES 

A natural extension of this question is to consider n-sided coins @ 
dice. 1-.Iany of the results from this paper can be generalized to dice with 
an arbitrary number of sides, but the graphs of the resulting functions 
become even more complex. One interesting case arises when we take 
a 3-sided coin such that the probabilities of two of the faces are 1/ 2 
each and the probability of the third face is O. This gives the Cantor 
function ~ the Devil 's staircase, as we are essentially converting 
binary numbers to trinary. I (~ " W~eftl.... 

, .,r--.-----~---. 

I 
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FIGURE 3. The Devil 's staircase. 
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