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e ABSTRACT. We study the properties of a function that takes z € mee}, —Susy
[0,1] as input and determines the probabilty that the number ob- FUIC";[IQ?:] M;&M.m, . go,(,{
tained by writing a decimal point and then tossing a coin infinitely
many times, writing a 1 after the point when the outcome is heads
and a 0 when the outcome is tails, is less than or equal to x. dcjwd virh

1. INTRODUCTION

The result of n tosses of a two-headed coin can be represented by an
n-digit binary number in the interval [0,1]. The kth digit is 0 if the kth
toss comes up tails and 1 if it comes up heads. These representations
correspond to rational numbers with denominators of the form 2* for
some k, a.k.a. dyadic rationals. Similarly, an infinite series of tosses

ives us a binary representation of any real number in the interval [0,1].
Now let y be the outcome of an infinite toss. For any given real number
ocder z € [0,1] we would like to determine the probability that y < z and
we denote this probabilty by f,(z) where p € (0,1) is the probability
that a coin toss comes up heads.

\/ For an idea of how to go about compute let us compute f,(3). The proafees A
binary expansion for 3 is .0I. Now we consider the possible outcomes
of an infinite sequence y of coin tosses. For .01 < z the first must

sl ‘jm‘pwf») necessarily come up tails, which contributes 1 — p to the probability. If

a”“5;¢m919,.- to the second toss comes up tails the inequality is still satisfied, however
% puitd whoit if it comes up heads, for the rest of the inequality to be satisfied the

remaining tosses must represent a number less than or equal to the
remaining digits of 3, which also have the form .01. So then

5(3) = =D -p+25(3).

Solving that equation we get vacloze
1 1-p)?
fp (_) —_ (_L /
3/ pP-p+1

Date: March 1, 2013.
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The follow images should provide some intuition about the behavior of

T Xrow, Weere”
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FIGURE 1. Graphs of f, for p=.1,.2,.3,.4,.5
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FIGURE 2. Graphs of f, for p = .3,.7 to illustrate the
relation between f, and fi_,.
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fp for p € (0, 1), show that f,(z) is not nowhere-differentiable and give
a definition of arc length for f,.

Sections 1, 3 by J.M. Néter

Sections 2, 6 by P. Wear

Sections 4, 5 by M. Cohen

i 7 2. CONTINUITY

Given a binary representation of some number @ € [0,1], the map-
ping @ + % corresponds to inserting a 0 between the decimal point and
the first digit of z. Similarly, z — § + % corresponds to inserting a 1
between the decimal point and the first digit of z. We now introduce
two functional equations that give us a method for evaluating f, on

W any dyadic number. Given a dyadic z, for an infinite flip sequence to
A be less than § the outcome of the first toss must be tails and the rest
of the tosses must represent a number less than . The probability of
the first toss being tails is (1 — p) and the probability of the rest of the
flips being smaller than z is f,(z), so we have
I
1 2) = (1= p)fla),
" o e 5(5) = 0 = P)ia)
) '

Ceom Yot FL‘&'{)WhiCh immediately generalizes to f,(%) = (1 — p)¥fy(z). For the

infinite toss sequence to give a number smaller than § + % the first
toss can come out either heads or tails. If it is tails the sequence will
necessarily be smaller. If it is heads, then the rest of the sequence must
give a number smaller than z, and so we have the second equation:

@) 5(3+5) =1-p+phla)

These two functional equations allow us to calculate f, for any dyadic
number, since every such number can be represented by a finite binary
/\ sequence (preceded by a decimal point of course) ending in a 1, and
so we can start with f,(.1) = (1 — p) and keep iterating (1) and (2)

\ g in A\ depending on the bits until we reach the desired dyadic.
Qd AN gec\ioh ! " Now we are ready to prove continuity. We will use the two equations
and monotonicity, which follows from the basic measure-theoretic ar-
gument that if ¥ > 2 the probability that a toss sequence is less than y
cannot be less than the probability that a toss sequence is less than z.
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Because we have monotomclty it suffices to show that for ad§ z and
the, Pepzv‘ thot -,l;!g/ any € > 0 there are numbers y < x and ' > x such that f,(z)— fp(y) <
woprant- m/ ¢/ eand f,(/) — fp(x) < e. Without loss of generality assume p > 1 — p.
,%pmq}!— i ant) cose, Forany 3: € (0,1) and for any positive integer N there exists n > N
j such that the nth digit of = is 0. If this were not the case then there
Y would be some point after which all the digits were 1, in which we &
TR \ could use the substitution .01 = .10 to obtain the de51red form. Now_”f
let ¥ = x4+ 27", where the nth digit of x is 0. The only toss sequences _
l which correspond to number smaller than g but greater than z are
those for which the first n — 1 tosses agree with the first n — 1 digits of
, so because p > 1 —p we have f,(y') — f,(z) < p"~'. As n approaches
infinity f,(y') — fp(y) will approach 0, so given any € > 0 we can always Clevesr vse of fhe
choose an appropriate y'. “oroblem " otho
We can find y < z similarly, as there will be infinitely many lsinthe , 0T =, o
binary expansion of z and in this case we want to choose a 1 arbitrarily a.ewtm‘r'age .
far down the binary expansion and flip it to a 0. Continuity follows
immediately.
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TOSSING A COIN 5

which, because as k approaches infinity h approaches 0, is equivalent
to saying f'(3) = 0. In the case p = } the function f (z) is exactly the
line y = z which is also differentiable.

4. DEFINING ARC LENGTH

An interesting question to ask about f, is its total arc length. In
order to rigorously investigate this, however, we will need an actual
definition of arc length. The traditional definition of arc length, as
seen in introductory calculus courses, is defined using the derivative of
the function:

Definition 4.1. Let f be a function defined and continuously differen-
tiable on [a,b]. Then the arc length of f on [a,b] is

b
(3) - / T+ @) du

This definition clearly does not work for f,, since f, is undifferen-
tiable on a dense set of points in its domain, However, there is a natural
definition of arc length which applies to all functions (although it may
be infinite). To introduce it, we must first define a partition:

Definition 4.2. A partition P of the closed interval [a,b] is a finite
sequence of n points z; satisfying z, = a, z, = b, and z; < x4y for
all i where both are deﬁned The ﬁ@gﬁ@of P, F( P), is defined as the
largest value of ;4 — :r:I a b] is the set of aﬂ.’ partztzons ojﬁa bB

A partition can be v1ewed as a way to spht [a. b] into the subintervals
[, zi41]. Note that this notion oﬂa partition is also used in the defi-
nition of Riemann integration. We define a notion of an approximate
arc length using a partition: ~

Definition 4.3. Let f be“a function defined on [a,b], and let P be a

partition of [a,b], consisting of z; for 1 <i < n. Then the P-length of
fos: 2/
V'

(4) Lp(f /= 2 V(@1 = 21)? + (F(zr1) — f@))?
k=1

The P-length essentially gives an approximate arc length, defined
with the(granularity given by the partition. It is the arc length that f
would have if it consisted of a collection of line segments, each covering
a segment from P, but with the correct value on the endpoints of each

segment. We can now define the actual arc length:
()
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Definition 4.4. Let f be a function defined on [a,b]. Then the arc
length of f on [a,b] is

(5) o= sup Lp(f)p

Pe&la,b)

The motivation for this definition is that the P-lengths define the
lengths of arbitrarily fine approximations to f, but the P-lengths should
always be at most the actual arc length (since lines are the shortest
path between two points). In fact, this supremum is also a sort of limit:

Lemma 4.5. Let f be a function defined on [a,b], with finite arc length
s defined according to 4.4. Then for any e, there exists a & such that
for all partitions P with fineness at most §, |s — Lp| < e.

This lemma can be proved with a relatively simple bounding argu-
ment (essentially, given a P with arc length close to the supremum,
all sufficiently fine partitions must have arc length almost that of P,
while they are still bounded above by s). The detailed proof is omit-
ted here, since it is not the focus of this paper. The lemma could be
taken as giving an alternative, possibly more natural definition for the
arc length of s; this definition is very similar to that of the Riemann
integral.

Note that both of these definitions are equivalent to 4.1 for continu-
ously differentiable functions. This can also be proved relatively simply

(by showing that the value of \/1 + f'(z)?Az is close to \/(Az)? + (Ay)?
for sufficiently fine partitions). Again, the detailed proof is not given
here.

it — Finally, consider that \/(zx41 — @) + (f(241) — f(zx))? is upper-

bounded (by the triangle inequality) by (zx+1 —zi) + | f(@ks1) — f ().
In the special case when f is monotonically increasing, f(zjy1) —
f(z) is always nonnegative, so we can drop the absolute value there:

V (@k1 — 2)? + (F(@rt1) — F(@0))? < (@41 — 2i) + (f(@h41) — F(@r)-

) ‘ ém«'i‘ u-&u‘

mnfgn

dugo, o
LI e end

ovary, mele,mi
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That can be used to bound Lp(f) for any partition P of [a, b]:

n—1
Lp(f) =Y V(@en — 21)? + (f(@k) — flan)?

k=1

< S (@hst - o) + (Flawnr) = £@)
©) =i

n—1 n-—1
= (Z Thy1 — T) + (Z f(@i4r) = ()
k=1 k=1

= (T — 21) + (f(2a) — f(21))
= (b—a) + (f(b) — f(a))

Since the arc length is the supren(ei)of the Lp, that gives rise to the
following lemma:

Lemma 4.6. Let f be a monotonically increasing function defined on
[a,b]. Then the arc length of f is at most (b— a) + (f(b) — f(a)), and
wn particular is finite.

5. ARC LENGTH OF f,

We now have the machinery to investigate the arc length of the f,
. on [0,1]. For the special case of p = 1, the arc length is clearly just v/2,
menhvn enrlief % since it is a straight line. For other values of p, we still know that f, is
monotonically increasing, and that f,(0) = 0 and f,(1) = 1. Then by
4.6 the arc lengths must be at most 2.

In this section, we will show that that bound is in fact tight: the arc
length of f, is 2. This, on its face, is somewhat surprising. Despite the | e nice
fact that f, is continuous, its arc length is the same as it would be if conteptvol
it were a monotonic step function covering the same range. inobie ot ran o1f

In fact, the proof can be interpreted as showing that f, is “almost | wwft g°ing °n
a step function” in that it can be broken down into intervals which ¥ why s
are mostly completely flat, but where the actual increase of f, mostly intepest "‘j
happens over intervals that are very steep, almost vertical.

We will lower bound the P,-lengths for particular partitions B,
where P, consists of the points z; = ‘2,‘—,,‘ for 1<i< 2"+ 1. These P,
have the property that z;,; — z; is always 2%,: they divide [0, 1] into 2"
equal segments. To obtain bounds, we will estimate the distribution of
[ (i) — f()).

The z; (for 1 < ¢ < 2") are precisely those numbers whose binary
expansion is all zeroes after the first n places after the decimal point.
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To examine f(ziy1) — f(x;) we define the function

X

@ Dpm) =1 (v+35) - @)
so that D(z;,n) = f(xir1) — f(zi). D satisfies the following:

Lemma 5.1. For all nonnegative mtegers m/aii y in [0,1) such that
2™y is an integer, D(y,m) is p*(1— —p)®, where a is the number of ones
in the binary ezpansion of y (up to the mth place) and b is the number
of zeroes.

Proof. We will prove this by induction on m. If m = 0, it is trivial: y

must be 0, and D(0,0) = f,(1) — f(0) =1 =p°(1 — p)°, as expected.
For m > 0, we will use the functional equations (given in the in-

gr_qc_il_l_gj;_ign) that apply for all z in [0,1]: fo(]) = (1 — p)fp(x), and
fr(z+%5) =1-p+pfi(z)

Flrst note that if y is in [0,4), ¥y + 5 is in [0, 3] (because both of
them, when multiplied by 2™, are mtcgers and they differ by 1; they
can’t skip over the integer 2’“‘1). Otherwise, both must be in [%, 1].
The former case corresponds precisely to the first bit after the decimal
place being 0, and the latter corresponds to it being 1.

e In the former case, we can apply the first functlonal 8quation
with o = 2y and z = 2 (y + 55) to get f,(y p)fo(2y)
and fp (¥ + %) = 1-p)fp (2 + F{:%’) (v+ &) = frly)
then comes out to (1 — p)M(2y, m — 1). Replacing y by 2y and
m by m — 1 is precisely stripping the leading 0 from the binary
expansion, while otherwise keeping the numbers of zeroes and
ones up to the mth place the same. The requirements for the
lemma are preserved. Thus, if the lemma holds for m — 1,
M (2y,m—1) will be p*(1—p)*~?, so M(y, m) will be p*(1 —p)?,
satisfying the lemma.

e The latter case is similar. Here, we apply the second function
equation with z = 2y — 1 and z = 2(y+ 5=) — 1, getting
Foy) =1—p+pfp(2y—1) and f, (y+ 5=) = 1-p+pfp(2y—1+
zm—l_F) (y + 5‘%) — f»(y) then comes out to pM (2y—1,m—1).
Replacing y by 2y — 1 and m by m — 1 is stripping the leading 1
but otherwise keeping the bits the same, and the requirements
for the lemma are again preserved. Thus, if the lemma holds
for m — 1, M(2y — 1,m — 1) will be p*~1(1 — p)®, so M(y,m)
will again be p'(1 — p)®, again satisfying the lemma.

The lemma then holds for m = 0 and holds for m if it holds for m — 1,
8o by induction it holds for all m. O

L— ek precisely

s eorveck B 7o

at egn nes j
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This lemma implies that f(z;41) — f(z;) is p*(1 —p)®, where a is the

number of ones and b the number of zeroes in the binary expansion of
z;, up to the nth place. If we define

P if the kth bit in the binary expansion of z; is 1
®) di=
A | g p if the kth bit in the binary expansion of z; is 0

then we can alternatively write
n
9) f(@iar) = fla:) = [] da
k=1
We can then get
(10) logy(f (i) — f(x:) = D logy di
k=1

We will now look at z; as a random variable, with ¢ chosen uniformly
out of the integers from 1 to 2", It is important to note that each digit
in the binary expansion of z; is independent of all the rest, so the dy
(and log, dk) are independent random variables. Furthermore, each of
di. (and each of log, d;.) has the same distribution (since the probability
of each bit being 0 is always %) We let 1 be the mean value of log, di
and o2 be the variance. Note that the probability distribution of an
individual d;, does not depend on n, so neither do p or o. Since the
probability of picking each value is %,

1
= 5(10&;10 + logy(1 —p))

(11) = logy Vp(1 - p)
< 1032% (by AM-GM inequa,litji)
— 5/

=-1 :

Since p < —1, we can then pick some real number 7 such that p <
r < —1. We will take any such r (again, not depending on n).

We need not calculate o? explicitly; what is important is that it is
constant over choice of n and that it is finite (since it applies to a
discrete probability distribution).

Since log, (f(zi41) — f(2;)) is the sum of n independent instances of
the same probability distribution, it has mean ny and variance no?.

Then we can apply Chebyshev’s inequality to bound the probability

M«w{f q; urfmm_"'
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}Jf'ﬁ i.)qe'lt”‘ﬁ'

what act Y0¥ that log,(f(zi41) — f(2;)) > nr: Chebyshev’s inequality says this prob-
doins & o L}( . ability is at most

%f-sf-'f oloing 4, no? 1 o°
and ‘;} d o (12) = — .
(nr—np)2 n r—pu
Then for any € > 0, there exists an N such that if n > N, that
probability will be at most §: we can simply set N to 2

o

Notably, exponentiating both sides shows that this is actilafllly bound— \
ing the probability that f(zi.1)—f(z;) > 2"". Sincer < —1,lim,,_ onir+1) = )
0. Applying the definition of a limit, this means that for any ¢ > 0,
there exists an N’ such that if n > N, 21 < %

Given any € > 0, we will then pick n as max(N, N'). We divide the
i (for 7 from 1 to 2") into “good” and “bad” values: “good” values
satisfy f(xiy1) — f(z;) < 2™ while “bad” ones do not. For each “good”

1?
f(@ip1) — flzi) <2

(13) =9 ", 2n(r+1)

€
—9—N
. 2

Since there are only 2" values of ¢, summing this over all good 7 gives

less than £. On the other hand, summing f(2;41) — f(z;) over all ¢

gives f(xany1) — f(21) = 1. Thus the sum of f(m.j.;.]_) — f(z;) over all

bad i gives > 1—£. Furthermore, \/(zi41 — )2 + (f(@ip1 — f(2:))? 2 '.

f(@i1)— f(z;) by thc triangle mequahty, so the sum of /(241 — @;)? t (f(zig1 — flz))* |

over all bad i is greater than 1 — . y
Since all ¢ were chosen with equal probability, the number of bad i is "

equal to 2" times the probability than an 4 is bad, which is less than §

so this number is less than 2"5. Then the number of good 7 is grea.ter

than 2°(1—£). Since Ziy1—2; = 27, \/(Tig1 — i)> + (f(@ir1 — f(z:))?
is always at least 27" for any 4, so the sum of this over all z; is at least
1= £. Then the sum of this over all i, good and bad, is at least 2 — .
This sum is precisely the Lp. Thus, for any € > 0, the arc length
must be at least 2 — ¢; thus the arc lcngth must be at leabt 2. Since it

canno%e\ﬁf it must equal 2.

Theorém 5.2. The arc length of f,, for any p# 3, on [0,1], is 2. sy shote the
/P Hieo rem ,grmﬂ-}{'&
don ‘F e faxf @ here ins shend **1

5&:“‘&-1)?0('5 i Mg e J'\'S (JT} '“"If (1'0“'

the echin?
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A natural extension of this question is to consider n-sided coins a.k.a.
dice. Many of the results from this paper can be generalized to dice with
an arbitrary number of sides, but the graphs of the resulting functions
become even more complex. One interesting case arises when we take
a 3-sided coin such that the probabilities of two of the faces are 1/2
each and the probability of the third face is 0. This gives the Cantor
function a.k.a. the Devil’s staircase, as we are essentially converting
binary numbers to trinary.

12

101

0.8

06

04r

0.2

FIGURE 3. The Devil’s staircase.
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