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1. I NTRODUCTION 

The result of n tosses of a two-headed coin can be repn:sented by an 
n-digit binary number in the intervaliO,lj. The kth digit is 0 if the kth 
toss comes up tails and 1 jf it comes up heads. These representations 
correspond to rational numbers with denominators of the form 2k for 
some k, a.k.s. dyadic rationals. Similarly, an infinite series of tosses 

ives us a binary representation of any real number in the interval [0,11. 
Now Jet y be the outcome of an infinite toss. For any given real number 

orde r x E [0 , 1] we would like to determine the probability that y ::; x and 
we denote this probabilty by fp(x) where p E (0,1) is the p robability 
that a coin toss comes lip heads. 
For an idea of how to go about compute let us compute !p(!) . T he J 
binary expansion for! is .01. Now we consider the possible outcomes 
of an infinite sequence y of coin tosses . For.Of:5 x the first must 
necessarily come lip tails, which contributes 1- p to the probability. If 
the second toss comes up tails the inequality is st ill satisfied, however 
if it comes up heads, for the rest of the inequality 1.0 be satisfied the 
remaining tosses must represent a number less than or equal to the 
remaining digits of k, which also have the form .01. So then 

I.G) ~ (I - p)(1 - P+ PI.W· 
Solving that equation we get ~cI~~ 

f (~) ~ (I - p)' . 
• 3 Ii' p+1 
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The follow images should provide some intuition about the behavior of 


fp" ~~ 
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FIGURE 1. Graphs of /p fo r p = .1, .2, .3,.4, .5 
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FIGURE 2 . Graphs of /p for p = .3, .7 to illustrate the 
relation between /p and it-p. 
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For most values of p) the function /p is pat hologiCal ) but it has many 
interesting properties. In the following sections we prove continuity of 
/p for p E (O, 1)) show that /p{x) is not nowhere-differentiable and give 
a definition of arc length for /p" 
Sections 1, 3 by J.M. Nater 
Sections 2, 6 by P. Wear 
Sections 4, 5 by M. Cohen 

2. CONTINUITY 

Given a binary representation of some number x E [0,1]' the map­
ping x H ~ corresponds to inserting a °between the decimal poin t and 
the first digit of x. Similarly, x H ~ + ! corresponds to inserting a 1 
between the decimal point and the fi rst digit of x. We now introduce 
two functional equations that give us a method for evaluating /p on 
any dyadic number. Given a dyadic x, fo r a.n infinite Hip sequence to 
be less tha.n ~ the outcome of the first toss must be ta.ils and the rest 
of the tosses must represent a number less than x. The probability of 
the first toss being tails is (1- p) and t he probability of the rest of the 
flips being smaller than x is /p(x), so we have 

.. \1 e (1) fpG) ~ (1 - p)fp(x),
.J.ltte '0\" e. • GI\ 

'tt-1- rtl!..Ovhich immediately generalizes to /p(f,;) = (1 - p)k / p{x). For the 
",,,,,\' 	

infinite toss sequence to give a number smaller than ~ + ! the first 
toss can come out either heads or tails. If it is tails the sequence will 
necessarily be smaller. If it is heads, then the rest of the sequence must 
give a number smaller than x, and so we have the second equation: 

(2) 	 fpG+ ~) ~1-p+pfp(x). 

These two fUllct ionai equations allow us to calculate /p for any dyadic 
number) since every such number can be represented by a finite binary 

~~ sequence (preceded by a decimal point of course) ending in a I , and 
I I' so we can start with fp(.l) ~ (1- p) and keep iterating (I ) and (2) 

t \\.l'i In l\~ "'1 depending on the bits until we reach the desired dyadic. 
q-' (jJ-W'- "iQ,c,\{cYI' - Now we are ready to prove continui ty. We will use the two equations 

and monotonicity, which follows from the basic measure-theoretic ar­
gument that if y > x t he probability that a toss sequence is less than y 
cannot be less than the probability that a toss sequence is less than x. 
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1'. ,," <~ would be some point after which all the digits were 1, in whichye 'il 
could use the substitution .01 = .10 to obtain the desired form, Now-=- 'il 

let y' = X +2- n , where the nth digit of x is O. ,The only toss sequences .J ,1.1.. "- "" 
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which correspond to number smaJler than y' but greater than x are J 

those for which the first n - 1 tosses agree with the first n - 1 digits of 
x, so because p;::: 1- p we have Jp(Y') - Jp(x) ~ pn- l. As n approaches 
infinity Jp(y') - Jp(y) will approach 0, so given any € > 0 we can always Clt-" t-I" Uti€. 0 F ~J,e.. 
choose an appropriate y', "~,.,lo,<""" th"t-

We can find y < x similarly, as there will be infinitely many Is in the . ell " ~ • I, -to ~"~.(' 
binary expansion of x and in this case we want to choose a 1 arbitrarily ·~,,·~t'«3L ~ 
far down the binary expansion and flip it to a O. Continuity follows 
immediately. 

3, DIFFERENTIABILITY AT X = ~ 
-n. ,'< f"of _<Jiol b<-
ew:Ju' .,. fMlfJ¢J .r Me I Although a thorough characterization of the sets on which Jp is dif­
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Wi s~ew J.;;r;oi\,,"~ by ~tlel.·'Il1 First notice that the binary representation of ~ is .01, so that the prob­
c'v') :::::: I.w. fr(II t}.\ .fe(J<) ~~,,\ ability that the outcome of 2n coin tosses matches the first 2n digits of 
'I .>0 h " , f ( ) f ( ) 

, ..... . :lH is pf1 (1 ~ p)n. Now denote the derivative limit lim p x + h - p x 

( Uf I<\j' O\) " -+0 h 


W by f;(x). As we did for continuity, we can choose a a arbitrarily far \ 

_" ",'-kHfr (- .l..' r (-twn the binary representation of !. Now let the (2k + 1Jth digit be a, -----...., " 
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I 2k 1 k k 'f','f- OI·tjtffI ( " •• -0 Thenwecanbound!' (J ) by2 + ·(p(l - p)) ~2.4k·(p(I - p) ). Also . "!.I. '1<<< ,
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which, because as k approaches infinity h approaches 0, is equivalent 
to saying f'(~) = O. In the case p = ~ the function f!(x) is exactly the 
line y = x which is also different iable. 

4. DEFINING ARC LENGTH 

An interesting question to ask about Ip is its total arc length. In 
order to rigorously investigate this, however , we will need an actual 
definition of arc length. The traditional definition of arc length, u.s 
seen in introductory calculus courses, is defined using the derivative of 
the function : 

Defini t ion 4.1. Let f be a function defined and continuously differen­
tiable on [a, bl. Then the arc length of f on [a, bl is 

(3) s = l VI + f'(x)' dx 

This definition clearly does not work for Jp, since fp is undifferen­
tiable on a dense set of points in its domain. However, there is a natural 
definition of arc length which applies to all functions (although it may 
be infinite). To introduce it, we must fi rs t define a parti t ion: 

Deflnjtion 4.2 . A partition P 0/ the closed interval la, b) is a finite 
sequence 0/ n points Xi satisfying Xl = a, XII = b, and Xi $; XH I /01' 

? all i wlJ:...ere both a~_de ned. The neness 0/ P , F(P), is defined as the 
largest value 0/ Xi+l - Xi· a, bl is th !-et of all partitions e 

A partition can be viewed as a w to split [a, bl into the subintervals 
[XilXi+d . Note that this notion 0 a partition is also used in the defi­
nition of Riemann integration. e define a notion of an approximate 
arc length llsing a partit ion: 

D efinit io n 4 .3. Let f a fu.nction defined on [a, b], and let P be a 
partition 0/ la, bl , co . ting of Xi for 1 :::; i :::; n . Then the P-length of 
f is: ? 

0 -1 

(4) L I'(f = L V (X'+I - x,)' + (f(Xk+ I) - f(x,))' 
1.:=1 

essentially gives an approximate arc length, defined 
with th ~ p.u'llr,.ar::: given by the partition. It is the arc length that fr a;;n l 
would have if it consisted of a collection of line segments, each covering? 
a segment from P, but with the correct value on the endpoints of each 
segment. We can now define the actual arc length: 

(;') 
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Definit io n 4.4 . Let f be a function defined on la, bJ. Then the arc 
length 0/ / on [a, b[ is 

(5) 	 s ~ sup Lp(JL" 

Pe[<l,bl t...I 


The motivation for this definition is that the P-lengths define the 

lengths of a rbitrarily fine approximations to f, but the P-lengths should 

always be at most the actual arc length (since lines arc the shortest 

path between two points). In fact , this supremum is also a sort of limit: 


Lemma 4.5. Let f be a Junction defined on [a, bj, with finite arc length 

s defined according to 4.4. Then f01' any € , there exists a 0 such that 

for all partitions P with fineness at most 0, 1s - Lpl < E. 


This lemma can be proved with a relatively simple bounding argu­

ment (essentially, given a P with arc length close to the supremum, 

all sufficiently fine partitions must have arc length almost that of P, 

while they are still bounded above by s). The detailed proof is omit­

ted here, since it is not the focus of this paper. The lemma could be 

taken as giving an alternative, possibly more natural definition for the 

arc length of s; this definition is very similar to that of the Riemann 

integra1. 


Note that both of these definit ions are equivalent 1.0 4.1 for continu­
ously differentiable functions. This can also be proved relatively simply -.....\~,~ '" 
(by showing that the value of ) 1 + /,(x)'6x is close to )(6x)' + (6W ",:-", "" 
for sufficiently fine partitions). Again > the detailed proof is not given.. ./ ~~ 
here. 

qt ~ Finally, consider that 	)(X'+I - x,)' + (J(xk+d - /(x,))' is upper­
d 	 bounded (by the triangle inequal ity) by (X'+I - x,) + [/ (Xk+I) - /(x,)I_ 

In the special case when f is monotonically increasing , f(xk+l) - o.IAQ\<l\1 \Cl~i!, 
f( xk) is always nonnegative, so we can drop the absolute value thcre:\ Q.:(~{"t<n 'MI~ 
)(Xk+1 - x,), + (J(Xk+I) - /(x,)), ::; (xk+l-x,)+(J(xk+d - /(x, ))_ J.. ,__ 

tAVItI', 	 il f'-UlItIl\.... ~I\ 

1).C,""44 t.M.t ~~ Itht, 
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That can be used to bound Lp(J) for any partition P of [a, bl: 

n-I 
Lp(J) = L J(Xk+1 - Xk)' + (J(Xk+I) - f(xk))' 

k=l 
n- I 

~ L (Xk+ 1- Xk) + (J(xk+d - f(xk)) 
(6) k= 1 

n-I 

k=1 k=1 

= (xn - xd + (J(xn) - f(xd) 
= (b - a) + (J(b) - f(a)) 

Since the arc length is the suprel~f the L p, that gives rise to the 
following lemma: 

Lemma 4.6. Let f be a monotonically increasing junction defined on 
[.,b{. Then the arc length of f is at most (b - 0) + (J(b) - f(a)), and 
in particular is finite. 

5. ARC LENGTH OF Ip 
We now have the machinery to investigate the arc length of the ip 

on [0,1]. For t he special case of p = ~, the arc length is clearly just \1"2, 
since it is a straight line. For other values of p, we still know that ip is 
monotonically increasing, and that /1'(0) = 0 and /1'{1} = 1. Then by 
4.6 the arc lengths must be at most 2. 

In this section , we will show that that bound is in fact tight: the arc 
length of Jp is 2. This , on its face , is somewhat surprising. Despite the 
fact that fp is continuous , its arc length is the same as it would be if 
it were a monotonic step function covering the same range. 

In fact , the proof can be interpreted as showing that fp is "almost 
a step function" in that it can be broken down into intervals which 
a.re mostly completely fiat, but where the actual increase of Jp mostly 
happens over intervals that are very steep, almost vertical. 

We will lower bound the Pn-Iengths for particular partitions Pm 
where Pn consists of the points Xi = i:;.. 1 for 1 ::; i ::; 2n + 1. These Pn 

have t he property that Xi+l - Xi is al ways 2~: they divide 10, I} into 2n 

equal segments. To obtain bounds, we will estimate the distribution of 
f(x,+I) - f(x,) . 

The Xi (for 1 ::; i ::; 2n) are precisely those numbers whose binary 
expansion is all zeroes after the first n places after the decimal point. 
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To examine f(XHd - J(Xi) we defiQe the function 

(7) D(~m)0v~~i 
so that D(Xi. n) = !(XHl) - J(Xi )' D satisfies the following: 

Md. 
Lemma 5.1. For' all nonnegative integers rniall y in [0 , 1) such that 
2my is an integer, D(y, rn) is pa(1- p)b, where a 1,8 the number of ones 
in the binary expansion of y (up to the mtlt place) and b is the number' 
of zeroes. 

Proof. 'vVe will prove this by induction on rn. If m = 0, it is trivial: y 
must be 0, and D(O,O) = 1,(1) - MO) = I = pO(I- p)O , as expected. 

For m > 0, we will use the functional equations (given in the in­
troduction) that apply for all x in [0, 1]: I,(~) = (I p)Mx) , and 
M~ +~) = l -p+pI,,(x). 

First, note that if y is in [0 , ~) , y + 2~ is in [0, ~ l (because both of 
them, when multiplied by 2"\ are integers and they differ by 1; they 
can't skip over the integer 2m- I). Otherwise, both must be in [ ~ , 1]. 
The former case corresponds precisely to the first bit after the decimal 
place being 0, and the latter corresponds to it being 1. 

• In the former case, we can apply the first functional equation 
with x = 2y and x = 2 (y + ,;,) to get y) = (I - p)fr (2y) 
and fr (y + ,~") = (! - p)I, (2y + "L . , (y + ,;,) - I,(y) 
then comes out to (1- p)M(2y, m -1). ep acing V by 2y and 
Tn by m - 1 is precisely stripping the leading 0 from the binary 
expansion, while otherwise keeping the numbers of zeroes and 
ones up to the mth place the same. The requirements for the 
lemma are preserved. Thus, if the lemma holds for m - 1, 
M(2y ,m-I) will be p"(I _ p)'- I, so M(y, m) will be p"(I- p)' , 
satisfying the lemma . 

• 	The latter case is similru·. Here, we apply the second function 
equation with x = 2y - 1 and x = 2 (y + 2!n) - 1, getting 
I,(y) = l-p+pI,(2y-l) and I, (y + ,~) = l-p+pI,(2y-!+ 
~ (y + ,;,) - I,(y) then comes out to pM(2y - l , m - I). 
ReplltCmg y by 2y - 1 and m by m - 1 is stripping the leading 1 
but otherwise keeping the bits the same, and the requirements 
for the lemma are again preserved. Thus, if the lemma holds 
for m -I, M(2y -I,m -I) will be po-l(l_ p)', so M(y ,m) 
will again be pl( l - p)b , again satisfying the lemma. 

The lemma then holds for m = 0 and holds for m if it holds for m - I, 
so by induction it holds for all m. 0 

~ c,f" 6"'"""l:) 
(;t-c...~iO'\o 

,,~ 	 111'" WI'\" ') 
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This lemma implies that f(Xi+d - !(Xi) is po.(l_p)b, where a is the 
number of ones and b the number of zeroes in the binary expansion of 
x" up to the nth place. If we define 

d _ { p if the kth bit in the binary expansion of Xi is 1 
(8) 

k - 1 _ P if the kth bit in the binary expansion of Xi is 0 

then we can alternatively write 

" 
(9) !(x..;) - !(x,) = II d, 

1.:=1 

We can then gel 

" 
(10) log,(f(X'+I) - !(X,)) = Llog,d, 

k=t 

We will now look at Xi as a random variable, with i chosen uniformly 
out of the integers from 1 to 2". It is important to note that each digit 
in the binary expansion of Xi is independent of all the rest, so the dk 
(and iog2 dk) are independent. random variables. Furthermore, each of 
dk (and each of iog2 dk) has the same distribution (since the probability 
of each bil being 0 is always 4). We let It be the mean value of IOg2 dk 

and (12 be the vru"iance. Kate that the probability distribution of an 
individual dk docs not depend on n, so neither do f.' or (j. Since the 
probability of picking each value is ~, 

1 
i' = 2(log, p + log,(1 - p)) 

= log, Jp(1 - p)
(11) 

< log, ~ (by AM-GM ineqU~ 
= -1 

Since J1, < -I, we can then pick some real number r such that J1, < 
r < - 1. We will take any sllch r (aga.in, not depcnding on n). 

We need not calculate 0 2 explicitlYi what is important is that it is 
constant over choice of n and that it is finite (since it applies to a 
discrete probability distribution). 

Since IOg2(f(Xi+l) - f(x,)) is the Slim of n independent instances of 
the same probability distribution, it has mean nIJ. and variance n02. 

Then we can apply Chebyshev's inequality to bound the probability 
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that IOg2{f(Xi+l) - !(Xi)) > nr: Chebyshev's inequality says this prob­
ability is at most 

na2 1 	 0"2 
(12) 	 =-- ­

(nr - nj.t)2 n r - J-L 

Then for any € > 0, there exists an N such that if n ?: N) that 

probability will be at most ~ : we can simply set N to ~ . r~~I" .'J ­' 
Notably, exponentiating both sides shows that this is actually bound~ 

iug the probability that f(:ti+l)- J(xd > 2nr. Since r < -1, lim ll-t_oo ~n(r+l ) = 
O. Applying the definition of a limit, this means that for any E > 0, .~ 

there exists an N' such that if n ?: N', 2n(r+l) < ~ . 
Given any € > 0, we will then pick n as max(N, N'). We divide the 

i (for i from 1 to 2'l) into "good" and "bad" values: "good" values 
satisfy f(XHd - !(Xi) $ 2nr while "bad" ones do not. For each "good" 
t, 

f(Xi+d - f(x,) 	s 2'" 

= 2- n , 21t(r+l)


(13) 
E 2- n

<2 
Since there are only 2n values of i) summing this over all good i gives 

less than~, On the other hand) summing f(xi+tl - f(x.) over all i 

gives f(X"+I) - f(xd = I. Thus the sum of f(x'+l) - f(x ,) over ~l 


bad i gives> 1-~, Furthermore) J(Xi+l xiF + (f(Xi+l f(xdF_ 

f(X;+I)- f(xd by the triangle inequality, so the sum of (Xi+l Xi)2 (J(Xi+l f(x,) )' ! 

over all bad i is greater than I - ~, 
 jSince all i were chosen with equal ~Jobability, the number of bad i is 
equal to 2n times the probability{ hanhn i is bad, which is less than l' 
so this number is less than 2n~. Then the number of good i is greater 
than 2n(I_~), Sincexi+l-Xj = 2-" ) J(Xi+J xd2+ (J(Xj+l f(x j))2 
is always at least 2-n for any i) so the sum of this over all X i is at least 
1 - ~. Then the sum of this over all i, good and bad, is at least 2 - €, 

This sum is precisely the Lp, Thus, for any E > 0) the arc length 
must be at least 2 - €; thus the arc length must be at least 2. Since it 
canno~t must equal 2, 

Th~~ The arc length of fp! for any p -=f 4, on [0, Il , is 2. 

{ ctM1 '/- )')'t l')I: ~.. )t'f q. 
-$~""h<rl'S Ir, }·h ,'~ WOlj 
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6. FURTHER POSSIBILITIES 

A natural extension of this question is to consider n-sided coins n.k.n. 
dice. Many of the results from this paper can be generalized to dice with 
an arbi trary number of sides, hut the graphs of the resulting functions 
become even more complex. One interesting case a rises when we take 
a 3-sided coin such tha t the probabilities of two of the faces are 1/ 2 
each and the probability of the third face is O. This gives the Cantor 
function a.k.n. the Devil's staircase, as we are essentially converting 
binary numbers to trinary. 

" 
' .0 

0.' 

o. 

0.' 

0.' 

., 

-°10., 00 0' .. 0.' 0.' ' .0 

FIGURE 3. The Devil's staircase. 
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