G.1

Normality of guotient spaces

For a quotient space, the separation axioms--even the Hausdorff property--
are difficult to verify. We give here three situations in which the quotient

space is not only Hausdorff, but normal.

JFheorem G.l1. ILet p: X~»Y be a closed quotient map. If X

is normal, then Y is normal.

Proof. First we show that if A is a subset of Y, and N is an
oren set of X containing pml(A), then there is an open set U. of Y
containing A such that p—l(U) ist contained in N.

The proof is easy. The set C = X- N is closed. The set p(C) is
closed and disjoint from A, so that the set U = Y- p(C) is an open set
of Y that ccntains A. If x is a point of U, then pml(x) centains
no point of C, so that it lies in N; thus p-l(U) is contained in N.

Now we verify normality of Y. Since one-point sets are closed in X
ard p 1is a closed map, one-point sets are closed in Y. Now let A and
B be disjoint closed sets of Y. Since p is continuous, p_l(A) and
p—l(B) are disjoint closed sets of X. Choose disjoint open sets N1 ard
N2 of X ccntaining them. Let U1 and UQ be: open sets of Y centaining
A ard B, such that p"'l(Ul) lies in N, ard p"l(Uz) lies in Ny
Because N1 and N2 are disjoipt, SO are U1 and UZ,C]

Definition. Iet X and Y be disjoint spaces; let A be a closed subset
of X; and let f: A—>Y be a continuous function. We define the
adjunction space Zf to be the quotient space obtained frqm the unien of X
and Y by identifying each point a of A with the point f(a) and with all

the points of f_l(f(a)). Let p: XUY—>Z. be the quotient map.

Now the map pfY 1is a continuous injection of Y into Zf. We: show
that it is also a closed map. If C 1is a closed set of Y, then pml(pCC))
equals the union of C and f“l(C). The set C 1is closed in Y, so
tha set f_l(C) is closed in A ard hence closed in X. Therefore,
p-l(p(C)) is closed in X¢Y, sc that p(C) is closed in Zf, by definition
of the quotient topology.

Tt now follows that p(Y) 1is a closed subspace of Zf, and that p(Y
is a homeomorphism of Y with p(Y).
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Theorem G.2. If X ard Y are normal, then so is T

Proof. A direct proof, using the definition of normality, is a bit

elabdFSZE: (See [D], p. 145.) 2An easier proof uses the Tietze theorem,
as we now show.

First, we note that- Zf is Tl' et =z be a point of Zf.
belongs to p(Y), then {z} is closed because one-point sets are closed in

Y, and p|Y: Y-—>Z

If =z

- is a closed map. Otherwise, p-l(z) is a one-point set

in ¥, and therefore closed; it follows from the definition of a cquotient map
that {z} is closed.

New let B and C be disjoint closed sets of 7 Let B, = p—l(B)r)X

£’ X

and C, = p-l(C)r)X. Similarly, let B, = p~1(B){‘Y and Cy = p (C)NY.
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Using normalilty of Y, choose a continuous function g: Y—»[0,1]

that equals 0O on BY and 1 on CY. Then define

h: AU B C = [0,1]

by setting h =gef on A, and h =0 on BX' ard h=1 on CX'

Because each of these three sets is closed in X ard h is unambiguously
defined when two of the sets overlap, h is continuous, by the pasting lemma.
Using normality of X and the Tietze theorem, extend h to a continuous
function %k : X—3[0,1]. Then g and Xk together define a continuous

function from XUY into [0,1]; it induces a continuous function
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on the quotient space that equals 0 on B ard 1 on C. The sets
F-l([O,%)) ar:d F—l((l/z,l]) are then disjoint open sets about B ard C,

respectively. ]

One application of adjunction spaces occurs in point-set topology, when
one is studying absolute retracts. (See Exercise 8, p.224.) Arother application
occurs in algebraic topology, when one constructs a CW complex; we will discuss
this application shortly.

Definition. Let X be a space and let {X*’}e{éJ be a family of subspaces
of X whose union is X. The topology of X is said to be coherent with the
subspaces X, if a set A 1is closed in X whenever AnX, is‘ closed in Xy
for each «£. (Or, equivalently,if a set U is open in X whenever UnQX,

is open in X, for each «.)

There is a strong connection between coherent topologies and guotient
spaces. It is described as follows: To begin, let us give J the discrete
topology and consider the product space X¥J. Then we consider the subspace
of XX J that is the union of the subspaces X X Iy, for all «&J. This
space is called the topological sum (or sometimes the disjoint union) of the

spaces X . It is denoted EX& . 1If we project XxJ onto X»s we obtain

a continuous map

p: iX a X
which maps each space X é’f%@;by the obvious homeomorphism onto X, . The map
p is a quotient map if and only if the topology of X is coherent with the
It follows that if X has the topology coherent with the

£: X—>Y is continuous if and only if each

subspaces Xy -
stbspaces X, . then a map

of the functions f‘Xd ie continuous.

Theorem G.3. Let X be a space that is the union of countably many closed
subspaces Xi , for iéZ+. Suppose the topology of X 1s toherent with

these subspaces. If each Xi is normal, then so is X.
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Proof. If p 1is a point of X, then ip}n XJ, is closed in Xi for each
i, so 4pY is closed in X. Therefore X is a T, space. '

let A arnd B be closed disjoint sets in X. Define Y
for n>»0, define

0 = Ay B, and

Y =AUVUBUX. U ...UX
n 1 n

Define a continuous function fo : YO-—~>[O,1] by letting it equal 0 on A

and 1 on B. In general, suppose one is given a continuous function
fn: Yn-9[0,1]. The space Xn+1 1

Xn+1' If 9, denotes the restriction of fn to the subspace Ynn Xn

we use the Tietze theorem to extend g, to a continuous function

is normal and Y nX ig closed in

+1'

g: Xn+1—-> [0,1]. Because Yn and Xn+ are closed subsets of Yn + the

1 1’

functions fn and g ccmbine to define a continuous function

£ Y +1"’>{011]

n+1 ° 'n
that is an extension of fn' The: functions fn in turn combine to define
a function f: X-»[0,1] that equals 0 on A arnd 1 on B. Because X

has the topology coherent with the subspaces Xn’ the map f is continuous. (]

Example 1. The preceding theorem does not extend to uncountable coherent
unions. Given an element A of Sy let X be the subspace consisting of
all elements x of ¥ such that xS« . Then X, ig a closed interval
in S, so it is comEact.

The space S, X% %a‘ is the union of the spaces X% —S—..n_.' each of which

is compact Hausdorff and thus normal. We show that S % S_n_, which is not

normal, has the topology coherent with these subspaces.
Jet U be a subset of S‘_‘J(g—n_ such that UQ(X.LX—S:I\.). is open in this
subspace, for each {. Tren the intersection

Uun (S&x Sp. )
is open in Sy % S, for each 4, and hence open in %\‘X S-m Since U is
the union of the sets

Un (S,% Sp, ).
1t 1s open in Sun_’x S.n.’ as desired.
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It is an interesting question to ask under what conditions coherent

topologies exist. One has the following two theorems:

Theorem G.4. Iet X be a set that is the union of the topological
spaces X, , for L£¢J. If there is a topological space XI‘ having X
as its underlying set, such that each X, 1is a subspace of XI" then there

is a topological space X, such that each Xy 1s a subspace of XC ard

C
the topology of XC is coherent with the subspaces X, The topology of
XC is finer than that of XT

Proof. We define a set D to be closed in Xc if Dn X4 is closed
in Xy for each £. It is immediate that @ and X are closed. The

required properties about unions and intersections follow from the equations

(D1U'°'UDH)"‘X,L = (D]‘(\XOL)U...U(DnnXJ‘) ,

Ny g DInXe = Ny g (TaXy ),

where D is an arbitrary collection of closed sets.

Note that if E is closed in XT' then EnX, is closed in X4
for each &, sc that E 1is closed in XC," Thus the topology of XC
is finer than the topology of XT

What else is there to prove? We must prove that each X 3 is a subspace
of XC' Isn't this obvious? Not quite. First., note that if A 1is closed
in XC' then AN Xy is closed in X, by definition. Ccnversely, suppose
B 1is closed in X&. Because XoL is a subspace of XT’ we have B = AQX,
for some set A closed in XT Bacause the topology of Xc is finer than
that of XT'* the set A 1is also closed in X,. Thus B = ANXy for

C
some A closed in X., as desired. [}

c)

, Theorem G.5. Let X be a set that is the union of the topological spaces |
X‘;L , for d&J.. If for each pair of indices &,(5 , the set qun X[B

is closed in both X, and XL5 , and inherits the same topology

from each of them, then X has a topology coherent with the subspaces X oL
Each XJ\ is a closed set in X 1in this topology.
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Proof. Once again, we define a topological space XC‘ by declaring a

set D to be closed in Xn if DAXy is closed in X, for each «. It is
immediate that this is a topology on X.
We show that each space X is a closed subspace of XC' First,

if A 1is closed in XC, tten AnX, is closed in X4 by definition of XC'
Convarsely, let. B be a closed set of X, ; we show B is closed in XC'
To do this, we must show that anﬁ is closed in Xp for each B . Since
B ig closed in Xg , the set anﬁ is closed in X, n Xﬁ because the latter
is a subspace of Xy . Then BnX[5 is closed in X/5 because XoLr\ Xﬁ» is

a closed subspace of X b O

This theorem does not hold if the word "closed" is omitted from the
hypothesis. There is an example of a set X that is the union of three
spaces such that the intersection of any two of the spaces is a subspace
of each of them; but there is no topology on X at all of which all three

of the spaces are subspaces! (See [Mu], p. 213.)

w ~
Example 2. Consider |R  in the product topology. Let IRn denote the
subspace of Rr* consisting of all points x = (xl,xz,.. .} suich that
X = 0 for 1i>»n. Then one has the sequence of subspaces

Leg?a ... ,

R
each of which is a closed subspace of the next. Their union is &®
which by Theorem G.5 has a topology coherent with the subspaces Iﬁn.
Theorem G.3 implies that R® is normal in this topology.

Now 1R°° alsc has several other topologies as well, ones that it
inherits as a subspace of IR(’o in its various topologies. The subset [ﬁn
inherits its usual topology from each of these topologies on K°. Hence
Theorem G.4 also applies to show that ¥ has a topology coherent with the
subspaces (ﬁn; this theorem also implies that the coherent topology is finer
than each of these topologies on [F. Since the one derived from the hox

topology is the finest of these, one has the following:

Crallenge question: TIs the topology on [R* that is coherent with the

subspaces 1§n the same as the topology that R™ irherits as a subspace of
R in the box topology?



Final remark. Here is a quick outline of how these notions are used in

algebraic topology. (See §38 of [Mu] for more details.)

The unit ball in iRn is the subset of [Rn consisting of all points
whose euclidean distance from the origin is less than or equal to one; the
unit sphere consists of those points for which this distance equals one. These
spaces are denoted B" and Sn_l, respectitvely. If there is a homeomorphism
h Bn—ﬁ>c, then C 1is called an n-cell, and we denote by BdC the subspace
n(s™ .

There is a class of spaceé that is very important in algebraic topology
called CW complexes; they were invented by J.H.C.Whitehead. In algebraic
topology, one defines for a given space a number of groups, such as the homology
groups Hn(X), the cohomology groups Hn(X), and the homotopy groups ‘h;(X).
Defining is one thing, but ccmputing (or even getting useful information)
is another. The structure of CW complex gives one a tool for dealing with these
groups. CW complexes are quite versatile--many useful spaces, such as the
Grassman manifolds we shall mention shortly, have the .structure of a CW
complex. Or the other hand, if one has some prescribed groups and wants
to find a spacé for which the homology groups, say, are isomorphic to these
groups, one can construct a CW complex that will do the job.

A CW complex is constructed as follows: One begins with a discrete
space, which we call XO. Then one takes a collection of disjoirt l-cells C, ,
and a family of continuous maps f, : Bd C&:—?Xp. One forms the topological
sum- 51(3d.' and uses the maps f, to define a continuous map f: jin Cq = XO.
One forms the adjunction space obtained from XQo‘i Cy by means of this map.
Thiz space is denoted Xl; it is called a l-dimensional CW complex.

So far, so good. Now one takes a collection of disjoint 2-cells D ,

‘and a continuous map g : ile Qs -3 X1 , and forms an adjunction space from

. . Z .
Z;DB and X1 by means of this map. This space is denoted X and is a

2-dimensional CW complex. .
Tt is clear how to continue. One has eventually an n-dimensional CW complex

¥, for each n. Are we finished? Nc. Recall that in the - construction

of the adjunction space X', the projection map defines a homeomorphism of

- . . -1 . .
K 1 with a closed subspace of . We normally identify 7" with this

closed subspace of Xt



.With this convention, we now have a sequence of spaces

Lexle . cxlea ...
ezch of which is a closed subspace of the next. Thelr union is given the

topology coherent with these subspaces; it is called an' (infinite-dimensional)

CW complex.
In order to work with the space we obtain, it is essential that it be

a Hausdorff space. (Basically, so we know that compact sets are closed.)
The theorems we have proved in this section do much more than that; they show

that every CW complex is normal.

Final final remark. We have talked a lot about how quotient spaces are

used in algebraic topology. Tet us close by giving an example of how they are

used in differential geometry.
A very important space in differential geometry is the space Gn K of

k-dimensional vector subspaces of ®". Tt is called the Grassmen manifold

of k-planes in n-space. The space Gn,l is thus the space of all lines
through the origin in R, Tt is fairly intuitive what one means by saying that
two k-planes are "close" tc one another, but how does one topologize this space
rigorously? One topologizes it as a quotient space.
To be specific, let Vn,k be the set of all X by n matrices, vhere k $n,
whose rows are orthonormal vectors. Such a matrix satisfies the equation AAt = Ik'
There is an obvious topology on this set, for it can be considered as a
stbspace of ]Rkn. In this topology, it is compact, for it is closed and bounded,
as the equation AAt = Ik stows. let p: Vn’k«% Gn,K bg. the map that
sends each matrix to the k-dimensional wvector subspace of Rn that is
spanned by its rows. We topologize Gn,k by requiring p to be a quotient
map.
Because p 1is continuous, it is immediate that Gn,k is compact. The
next question is this: Is it Hausdorff? The ansver is "yes," because the
map p 1is in fact a closed map, so Theorem G.1 applies.
To show p is closed, we examine first what the relationship is between
two matrices A and B vwhose rows span the same vector subspace of E{R
This occurs precisely when each row of A equals a linear combination of
the rows of B, and conversely. This statement can be expressed by the matrix equation

A = CB, where C 1is a nonsingular k by k matrix. It follows that C satisfies the
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. t . .
equation CC~ = Ik' which means that C belongs tp Vk,k' A quick

. computation with matrices verifies this fact: The equation A = CB, along
with the equations aa° = b = I, '
ABt =C ard’ Ik = C(BAt).

implies that

- . . t t
The first equation gives us, by transposing, the equation BA™ = C7;

substituting this result into the second equation gives us the equation

_ ~~E
Ik = CC~.

Now we show that p 1is a closed map. If S 1is a closed set in Vh K’
then the set p_l(p(S)) is the set of all matrices of the form CA, where
C belongs to V, , and A is an element of S. Thus p_l(p(S)) is the

image of V. X S under the map diven by matrix multiplication. Now Vk "

k[k ’
is compact arnd S is compact (being closed in Vn k). Their cartesian

product is compact, so the image under matrix multiplication (which is
continuous) is also comppct and therefore a closed sibset of Vo

By definition of the quotient topology. it follows that p(S) is closed

in G, K as desired.
There is of course a great @eal more to say about Grassman manifolds.
The space Qm K is in fact a manifold (as the terminology implies); it is a

manifold of dimension k(n - k).

If we replace R throughout by @n, then there is the obvious inclusion

~n an+1 . . : A .
;o it i si v .
of R 1Into R 7; it gives risetoan incliusionmap of Vn,k into V. 4 Tk

This in turn induces a continuous injective map on the quotient spaces

i: —> .
1 Gn,k ’ Gn+1,k

Since all the spaces involved are compact Hausdorff, we can thus consider

G to be a closed subspace of G . If now we take the union of
n/k n+lrk

the spaces

S .o
Gk,k < G}:+1,kc‘ Gn,kC 2

one has the space of all %k planes . in R® . as you would expect, we give it_

the coherent topology. And Theorem G.3 implies that this space is normalf



