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1 Introduction

The fundamental group and homology groups both give extremely useful information, particularly
about path-connected spaces. Both can be considered as functors, so we can use these constructional
invariants as convenient guides to classifying spaces. However, though homology groups are often
easy to compute, the fundamental group sometimes is not. In fact, it is often not even obvious when
a space is simply connected. In particular, noncontractible simply connected spaces are difficult to
identify, as contractibility is often the most geometrically intuitive way to determine if a space is
simply connected.

As such, we would like to know if there is a connection between these two seemingly disjoint
geometric concepts. The answer lies in the Hurewicz theorem, which in general gives us a connection
between generalizations of the fundamental group (called homotopy groups) and the homology
groups. As we will show, there exists a “Hurewicz homomorphism” from the nth homotopy group
into the nth homology group for each n, and the Hurewicz theorem gives us information about
this homomorphism for specific values of n. For the particular case of the fundamental group, the
Hurewicz theorem indicates that the Hurewicz homomorphism induces an isomorphism between a
quotient of the fundamental group and the first homology group, which provides us with a lot of
information about the fundamental group. In many cases, the Hurewicz theorem tells us that the
Hurewicz homomorphism is actually an isomorphism between the lowest nontrivial homotopy group
and the lowest nontrivial reduced homology group. Moreover, it gives us a method for determining
which homotopy group is the lowest nontrivial one given the homology groups. This connection is
a powerful computational tool, despite the fact that it tells us little about homotopy groups past
the lowest nontrivial one.

In this paper, we first develop and prove a special case of the Hurewicz theorem. We then give
a few results from the theory of the higher homotopy groups. Finally, we state the full form of the
Hurewicz theorem (without proof). We discuss some applications throughout the paper.

2 The Fundamental Group and First Homology Group

The simplest case of the Hurewicz theorem, which in general relates the nth homotopy group (to
be defined later for n = 1) and the nth homology group, is the n = 1 case. We develop this, state
the Hurewicz theorem for this case, and give an application. We then prove this case, which is not
too difficult thanks to the lucky coincidence that paths and singular 1-simplices are essentially the
same objects.
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2.1 Statement and Application of the n = 1 Hurewicz Theorem

We need very little machinery to prove the n = 1 case of the Hurewicz theorem, but we do need
two simple, related group theoretical notions from [1].

Definition 2.1. The commutator subgroup of a group G, denoted [G,G], is the subgroup gen-
erated by all elements, called commutators, of the form ab(ba)−1 for any a and b in G.

Commutators are, in a sense, a measure how much of G fails to be commutative. In particular,
the commutator subgroup is trivial if and only if all commutators are 1. But a commutator is
trivial if and only if (ba)−1 is equal to (ab)−1. By the uniqueness of inverses, (ba)−1 = (ab)−1

implies ba = ab. Hence all commutators are trivial, that is, the commutator subgroup is trivial, if
and only if G is abelian.

Notice that the commutator subgroup is normal by the following chain of equalities for any
g ∈ G:

g−1(aba−1b−1)g = g−1agg−1bgg−1a−1gg−1b−1g

= (g−1ag)(g−1bg)(g−1a−1g)(g−1b−1g)

= (g−1ag)(g−1bg)(g−1ag)−1(g−1bg)−1

The last line is in [G,G], so conjugating a generator of [G,G] keeps us in [G,G]. Breaking a general
element into a product of generators and inserting copies of the identity element between them
means that [G,G] is closed under conjugation of any element, which establishes normality. Hence,
we may quotient out:

Definition 2.2. The abelianization Gab of a group G is the quotient G/[G,G].

Unsurprisingly, the abelianization is appropriately named.

Proposition 2.3. The abelianization Gab of a group G is abelian.

Proof. For any a, b in G, we have that aba−1b−1 is in the commutator subgroup by definition. Hence
the class of aba−1b−1 under the quotient map is the class of the identity 1, so right multiplying by
the class of ba shows that the class of ab equals the class of ba.

We said before that the commutator subgroup of an abelian group is trivial. This means that
the abelianization of an abelian group G is G itself. It also happens that abelianization is also a
functor.

Note that any homomorphism h : π1(X,x0) → G, where G is any abelian group, induces a
homomorphism h′ : (π1)ab(X,x0)→ G, specifically because G is abelian.

We now construct a homomorphism h : π1(X,x0)→ H1(X) which will be used in the statement
of the Hurewicz theorem. Let X be a topological space base pointed at x0. Pick an element [γ] of
π1(X,x0), and let γ be a path in this class. This map γ goes from I to X, where I is the 1-simplex,
so γ can be thought of as a singular 1-simplex in X. But γ(0) = γ(1) = x0, where 0 and 1 are the
two faces of the 1-simplex I. Hence the boundary of γ is 0, so γ is a cycle. We then define h([γ])
to be the homology class of γ (considered as a cycle).

We can now state the n = 1 case of the Hurewicz theorem, Theorem 2A.1 in [2] and Theorem
7.1 in [3]:
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Figure 1: Splitting of I to show h is well-defined.

Theorem 2.4. (Hurewicz, n = 1 case): If X is path connected and base pointed at x0, then h
is a well-defined homomorphism, and the map h′ : (π1)ab(X,x0) → H1(X) induced by h is an
isomorphism.

Before we prove this, we state an obvious corollary and application of the corollary:

Corollary 2.5. If X is a path connected space with abelian fundamental group, then π1(X,x0) =
(π1)ab(X,x0) is isomorphic to H1(X).

Corollary 2.6. Let G be a path connected topological group with identity element 1. Then π1(G, 1)
is isomorphic to H1(G).

The second corollary follows because the fundamental group of a topological group is abelian.
The Hurewicz theorem is trivially false when X is not path connected; take X to be S1 S1.

Then the fundamental group at any point is Z, but the first homology group is Z

∐⊕
Z.

2.2 Proof of the n = 1 Hurewicz Theorem

Proof of Hurewicz theorem, n = 1. We follow [2]. We must check the following:

• h is well-defined

• h is a homomorphism

• h′ is an isomorphism

We first show that h is well-defined, i.e., that it gives the same homology class regardless of
choice of γ. Let γ′ be some other path in the homotopy class [γ]. and, let H(t, s) be a homotopy
from γ′ to γ. Let the vertices of I × I be vi for i = 0, 1, 2, 3, ordered as in Figure 2.2, and split
I × I on the v0, v3 diagonal with all sides oriented away from v0 and towards v3. Then H can be
regarded as the sum of two singular 2-simplices σ1 and σ2, where σ1 is on the v2 side. (Again see
Figure 2.2.) We take the boundaries, and let fx0 be the constant 1-simplex which maps to x0:

∂σ1 = fx0 −D + γ′

∂σ2 = γ −D + fx0

where D is the restriction of H to the diagonal. Subtracting gives ∂(σ1 − σ2) = γ′ − γ
1 2

− 2fx0 . As
the constant map from ∆ to x0 is the boundary of the constant map from ∆ to x0, we conclude
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that γ′ − γ is a boundary. Adding this to γ gives us γ′, so γ′ is equal to γ plus a boundary. Hence
the homology class of γ′ is the homology class of γ.

Next, we check that h is a homomorphism. To this end, let [γ] and [γ′] be elements of the
fundamental group. Write ∆2 as [v0, v1, v2], and let σ : ∆2 → X be the map which first takes the
orthogonal projection of ∆2 onto the [v0, v2] edge and then applies γγ′ : I = ∆1 → X. Notice that
the boundary of σ is γ′−γγ′+γ up to a reparametrization of γγ′ (which does not affect homotopy).
Hence, h([γ]) + h([γ′])− ∂σ = γγ′ = h([γ][γ′]), which shows that h is a homomorphism.

We note that the homology class of γ̄ is the homology class of −γ, where γ is any path, because
h is a homomorphism.

To show that h′ is an isomorphism, it suffices to show that h is surjective and has kernel equal
to the commutator subgroup of π (X,x ).

Surjectivity: Let σ =
∑ 1 0

i niσi be a 1-cycle. We can split up multiples of the σi so that each ni
is ±1, though this of course allows us to have σi = σj for i = j. Moreover, by possibly reversing
some∑of the σi, we can assume that all the ni are 1. Thus, without loss of generality we may take
σ = i σi.

If there is some σi which is not a loop, there must exist a σj in the sum such that the composition
σiσj is defined, or else the boundary of σ would be nontrivial. But σiσj is homologous to σi + σj
as we showed when checking that h is a homomorphism. Therefore we can replace σi +σj with the
single element σiσj without changing the homology class of σ. Without loss of generality then, we
may assume that all of the σi are loops.

Now let γi be any path from the base point x0 to the base point of σi (regarded as a loop),
which exists because X is path connected. Then γiσiγ̄i is homologous to γi + σi + γ̄i, since h is a
homomoprhism, which is homologous to γi + σi − γi = σi since γ̄i is homologous to −γi. Thus, by
replacing σ with a homologous cycle, we may assume that all the σi are loops based at x0. Finally,
since the sum is homologous to the composition, we can take i σi to be a single singular 1-simplex
without changing the homology class. In particular, this singular

∑
1-simplex is a loop at x0, which

means that its homotopy class maps to the homology class of σ, which is what we needed.

Kernel: First let γγ′ ¯γ̄γ′ be in the commutator subgroup of π1. Then its image under h is
′ ¯γ + γ + γ̄ + γ′. But H1(X) is abelian, so this sum is zero (since γ̄ = −γ). Hence the commutator

subgroup of π1 is contained in the kernel of h.
Now suppose that [γ] is in the kernel of h. It suffices to show that [γ] is trivial in (π1)ab(X,x0).

As a loop, γ∑is a 1-cycle, and it is homologous to 0, which means that γ is the boundary of some
2-cycle σ = i niσi. We can, as before, take ni = ±1.

Now, for each σi, we can write ∂σi = τi0 − τi1 + τi2 for three 1-cycles τij . Notice that

γ = ∂
∑

n j
iσi =

∑
ni∂σi = ni(τi0 τi1 + τi2) = ( 1) niτij

i i

∑
i

−
∑
i,j

−

But γ is a singular 1-cycle, which means that all the τij must form canceling pairs except for
one, which is equal to γ. If we then glue together the 2-simplices, identifying canceling pairs of
edges(preserving orientation), we get a ∆-complex K.

Now since identified pairs are the same map, the σi together form a map σ : K → X. Let A be
the 0-skeleton of K union the segment corresponding to γ. We can slide the image of each vertex
along a path from its original image to x0. This defines a homotopy of A with a new 0-skeleton
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which maps each point to x0 and leaves γ unchanged. By the homotopy extension property, since
the 0-skeleton plus the segment is a subcomplex of X, we can extend this homotopy to a homotopy
defined∑ on all of K. If we now break the deformed K down into its simplices, we get a new chain

imiσi
′, but every singular 1-simplex τij

′ on the boundary is now a loop at x0 (because we moved
the image of each vertex to x0).

Now, since (π1)ab(X,x
j

0) is abelian, we can write [γ] = i,j(−1) mi[τij
′ ] in the abelianization.

We wrote ∂σi∑= τi0− τi1 + τi2, but because h′ is a homomorphism, the sums on j can be condensed
to give [γ] = imi[∂σi]. For each σi, we can deform the image

∑
of σi to the image of one vertex by

sliding the image of one edge through the image of the interior (pulling the other two vertexes along
with it). This deformation is a homotopy between ∂σi and the constant map. Hence [∂σi] = 0, so
[f ] = 0 in the abelianization of π1.

Notice in our statement of the Hurewicz theorem that we took X to be path-connected. We
only used the fact that X was path connected in proving that h is surjective, so h is still well-defined
for arbitrary spaces. However, if X is not path-connected, then a theorem from basic homology
theory tells us that H1(X) is the direct sum of the first homology groups of the path components
of X. The elements of π1(X,x0) are classes of paths inside the path component of x0, so the
image of h is contained in the homology group of this same path component. This shows us that,
although we can still define h in general, it does not give us any new information about X beyond
the information gained when only considering the path-connected case.

3 The Higher Homotopy Groups

The higher homotopy groups are, like the fundamental group, homotopy classes of maps into a
space. Rather than homotopy classes of paths, though, the maps are higher-dimensional analogs.
There are two equivalent definitions. The first uses maps from In into the space. This is the
most natural way to generalize the definition of the fundamental group, and in particular it makes
defining the group operation simple. However, it requires a condition on the entire boundary of In,
making it a little less natural to relate to homology groups. The other definition uses maps from
Sn into the space. This version is a bit harder to work with because the group operation becomes
more complicated, but the restriction required is only on a single point.

There is also a notion of relative homotopy groups, which allow us to formulate an even more
general version of the Hurewicz theorem. The general form does reduce to a Hurewicz theorem for
absolute homotopy, however. It may seem odd that we did not consider relative homotopy for the
fundamental group, but this is because the group structure for relative homotopy breaks down for
the fundamental group. In the following subsections, we develop the theory of the higher absolute
and relative homotopy groups. All the development follows Chapter 4 in [2].

3.1 Absolute Homotopy Groups

Definition 3.1. The nth (absolute) homotopy group of a topological space X base pointed at
some point x0, denoted πn(X,x0), is a set of equivalence classes of maps from In into X, where I
is the unit interval, which map ∂In to x0. The equivalence relation is homotopy by a homotopy ft
for which ft(∂In) = x0 for all t.
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If we define I0 to be a point with empty boundary, we can extend this definition to n = 0.
We immediately notice, then, that π0(X,x0) is simply the set of path components of X (and is
independent of base point), as the boundary condition gives no restriction and a map from I0 to a
point x in X is homotopic to the map from I0 to any other point x′ in the path component of x (a
path from x to x′ gives us a homotopy).

For n ≥ 2, we will define a group operation + (the notation is used because the operation will
make πn(X,x0) abelian) as follows. Given two maps f and g from In to X, define

(f + g)(s1, s2, ..., sn) =

{
f(2s1, s2, ..., sn) s1 ∈ [0, 1 ]2

g(2s1 − 1, s2, ..., sn) s1 ∈ [1 , 1]2

If we have a homotopy ft between f and some other map f ′, then we can define a homotopy
(f + g)t from f + g to f ′ + g by replacing (f + g) by (f + g)t on the left hand side of the above
definition and f by ft on the right hand side. This homotopy means that + is well-defined as
an operation on homotopy classes. It is easy to check that + turns πn(X,x0) into a group. It is
important to remember that this is only a definition for n ≥ 2; there is not a natural way to define
a group structure on π0(X). The definition is of course the same for n = 1, but the notation is
different because the fundamental group need not be abelian.

The only problem with this definition is the fact that the maps In → X and the homotopies
have a cumbersome restriction of requiring their value on the entire boundary of In to be x0. There
is an alternate way to view the πn, though it makes the addition operation more cumbersome.

Proposition 3.2. The homotopy group πn(X,x0) is naturally isomorphic to the set of maps Sn →
X which, for some fixed q in Sn, map s0 to x0.

Proof. Maps from In to X which map ∂In to x0 can be viewed as maps from In/∂In to X which
map the image of ∂In under the quotient map to x0. But the image under the quotient map of
∂In is a point q, and In/∂In is Sn.

We now consider several properties of the higher homotopy groups which will be useful to us.

Proposition 3.3. If X is a path-connected space, and x and y are two points in X, then πn(X,x)
is isomorphic to πn(X, y) for all n.

The isomorphism is not canonical; it will depend on a path from x to y, but each homotopy
class of path from x to y will give a unique isomorphism.

Proof. We already know this for the n = 1 case, and since there is only one path component of X,
the n = 0 case is trivial. Now consider any map f in πn(X, y), considered as a map from In. Let
γ be any path from x to y, and let S = [ε, 1 − ε]n for some ε in (0, 1). From each point on ∂In,2
we draw a line segment to (1 , 1 , ..., 1), which intersects ∂S. In particular, these segments are all2 2 2
radial and centered at (1 , ..., 1). Now define f by reparametrizing f such that its domain is S;2 2

′

notice that on ∂S, our new map f ′ must be identically y. We can extend f ′ to a map fγ : In → X
by letting fγ equal γ on each radial segment (reparametrized appropriately).

We now create the change of basepoint map bγ : πn(X, y) → πn(X,x) by sending [f ] to [fγ ].
This is well-defined because we can reparametrize homotopies between two maps on In such that
they become homotopies on S. We have to check that we have an isomorphism.
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First, let f and g be any two maps in πn(X, y). Define the map f + 0 to be f reparametrized
to have domain on the x1 ≤ 1 half of S and be equal to y on the other half of S. Define 0 + g the2
same way but to be g on the x1 ≥ 1 half of S. Since these are reparametrizations (up to adding2
the constant map to half the domain, which does not change homotopy class), they are homotopic
to f and g respectively.

We now claim that the following is a homotopy of (f + g)γ with (f + 0)γ + (0 + g)γ , which is
itself homotopic to fγ + gγ :

(f + 0) 1
γ((2 t)s1, s2, ..., sn s1 [0, ]

ht(s1, ..., sn) =

{
− ∈ 2

(0 + g)γ((2− t)s1 + t− 1, s2, ..., sn) s1 ∈ [1 , 1]2

Clearly this map begins at (f + g)γ and ends at fγ + gγ by the formulas. Consider points with
s1 = 1 . We need to check that our formulas match. Our two formulas at this point are (f +0)γ(12
t

−
, s2, ..., sn) and (0 + g)γ( t ), s2, ..., sn). Now, if t < ε, then both of these become the same point2 2 2

on γ by symmetry. If t > ε, then both of these points are y because we have entered the relevant2
halves of S. Therefore, this is continuous and a homotopy, showing that bγ is a homomorphism.

Now notice that (γη)f is homotopic to γ(ηf) by simple reparametrization. Furthermore, if
c is the constant path, then cf is homotopic to f , again by reparametrization. Therefore, we
have an isomorphism because the inverse map bγ̄ is well-defined and composes with bγ to give the
identity.

Basepoint independence is useful because homology groups are basepoint independent objects;
were the higher homotopy groups basepoint dependent, we would not expect to get a useful rela-
tionship with homology groups.

On a somewhat different point, given that the n = 1 case of the Hurewicz homomorphism
involved the abelianization of the fundamental group, we might expect the abelianizations of higher
homotopy groups to appear in a higher-dimensional Hurewicz theorem. However:

Proposition 3.4. If X is any topological space, πn(X,x0) is abelian for n ≥ 2 where x0 is any
base point.

Proof. f + g is a map which is a reparametrization of f on the s1 ≤ 1 portion of In and a2
reparametrization of g on the s1 ≥ 1 portion. Reparametrize each again to some smaller cube of2
side length less than 1 , and map the rest of the domain to x0 (which preserves continuity). Then2
we can, again by reparametrization, translate these domain cubes around each other by moving
their center in the s3 = 1 hyperplane for n > 2 and in I2 itself for n = 2; in particular, we can2
translate the centers of the domain cubes simultaneously along linear paths which move the centers
to s2 = 1 and 3 , then over to s1 = 3 and 1 , then to s2 = 1 . This exchanges the locations of the4 4 4 4 2
domain cubes, and since their side lengths are less than 1 , they never intersect in the process of2
their “motion,” so we always have a well-defined continuous map. We can then reparametrize once
more to expand the domains back to their original sizes, but they have now switched sides, so the
new path is g + f . See Figure 2 for a schematic of the process.

Since reparametrization (and adding the constant map at the base point to part of the domain)
does not affect homotopy class, we conclude that f + g is homotopic to g + f , so that πn(X,x0) is
abelian.
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Figure 2: Schematic showing the homotopy making π2 abelian. The large box is I2, and the arrows
in the second picture are the “routes” taken by the regions on which the function families are f
and g. So long as the small boxes are small enough (side length less than 1 , they will not intersect2
each other. Adapted from [2].

The n = 1 version of the Hurewicz theorem was slightly inconvenient because computing the
first homology group was not sufficient to find the entire fundamental group; we only got a quotient
of it. We should expect this inconvenience to disappear in higher-dimensional cases because the
quotient (the abelianization) is trivial.

3.2 Relative Homotopy

Another useful notion is that of relative homotopy. Relative homotopy groups allow us to generalize
the Hurewicz theorem to relative homology, despite the fact that, as we will see, this does not work
as well for n < 3. We will not define relative homotopy for n = 0; a definition is not immediately
obvious, nor is it particularly useful. To make our definition, suppose that A ⊂ X and the base
point x0 under consideration is in A. We use the cubical domain definition of the homotopy groups.
We consider In−1 to be the s = 0 face of Inn , and define Jn−1 to be the closure of ∂In − In−1.
Notice that Jn−1 is the union of all of the other faces of In including the relevant edges and vertices.

Definition 3.5. The nth relative homotopy group πn(X,A, x0) is the set of homotopy classes
of maps In → X such that the maps and homotopies all map In−1 into A and map Jn−1 to x0.

We need to invent a well-defined operation on these sets to turn them into groups. For n ≥ 2,
we can simply restrict the group operation on πn(X,x0), as sn does not play a part in the group
operation. Consider, however, the n = 1 case. I0 is the point 0 and J0 is the point 1, so π1(X,A, x0)
is the set of homotopy classes of paths from any point in A to x0. Just as arbitrary paths from a
basepoint do not naturally form a group structure, neither does π1(X,A, x0).

We can also apply the exact same argument that we used for the absolute homotopy groups to
show that relative homotopy groups are abelian, but only for n > 2. For n = 2, one edge of each
domain has a broader restriction on where it maps, so our argument breaks down, as we need to
translate the domain along the s2 direction. The n = 2 case is not generally abelian.

Just as in the case of absolute homotopy groups, we can also define the relative homotopy
groups in terms of maps from spheres. Maps with classes in the relative homotopy group effectively
collapse Jn−1 to a point, which turns the face In−1 into Sn−1 and In into Dn. Hence we can think
of π n

n(X,A, x0) as homotopy classes of maps from D to X which send ∂Dn = Sn−1 into A and
send a fixed point on ∂Dn to x .0
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We now can extend the idea of path-connectedness and simply-connectedness using the higher
homotopy groups.

Definition 3.6. A space X is n-connected if πi(X,x0) = 0 for i ≤ n. A pair (X,A) is n-
connected if πi(X,A, x0) = 0 for all i ≤ n.

Notice that for absolute homotopy, 0-connected precisely means path-connected, whereas 1-
connected precisely means simply-connected.

4 The General Hurewicz Homomorphism

Now that we have devloped the formalism of the higher homotopy groups and verified some useful
properties, we state the full form of the Hurewicz theorem, which is Theorem 4.37 in [2]. We will
not prove it, as the proof is very involved. However, we will construct the Hurewicz homomorphism.

To do the construction, we use the sphere definition of the higher homotopy groups. Let A ⊂ X
be arbitrary topological spaces. Let α be any generator of Hi(D

i, ∂Di), a group which is isomorphic
to Z, and let [f ] be an element of πi(X,A, x0) represented by the map f . Then f induces a map
f : Hi(D

i, ∂Di)→ Hi(X,A). We define h : πi(X,A, x0)→ Hi(X,A) by sending [f ] to f (α). This∗ ∗
is well-defined because homotopic maps induce the same map on homology.

Theorem 4.1. (Hurewicz) For all i ≥ 1, the map h is a homomorphism. If A ⊂ X is an (n− 1)-
connected pair of path-connected spaces with n ≥ 2 and A nonempty, then the map induced by h on
the abelianization (πn)ab(X,A, x0) into Hn(X,A) is an isomorphism. Furthermore, Hi(X,A) = 0
for 1 ≤ i < n.

We need to assume n ≥ 2 so that πn(X,A, x0) is a group. Moreover, h itself is an isomorphism
when n ≥ 3 because these relative homotopy groups are abelian. It is also interesting to notice that
we do get a relationship between the ith homotopy group and the ith homology group in general,
though it is not always an isomorphism.

With these points in mind, we examine a few useful corollaries. From this point on, we use
the term “Hurewicz homomorphism” to mean, for n ≥ 2, the map h : πi(X,x0) → Hi(X) which
results from taking A to be a point. For n = 1, we mean the isomorphism between (π1)ab(X,x0)
and H1(X) which we discussed in Theorem 2.4.

Corollary 4.2. If X is (n
˜

− 1)-connected, then the Hurewicz homomorphism is an isomorphism.
Furthermore, Hi(X) = 0 for i < n.

We claim that taking A to be the point x0 reduces us to absolute homotopy groups, which
implies the corollary. This is true because the relative homotopy group is the set of homotopy
classes of maps which send ∂In and Jn−1 ⊂ ∂In to x0, which is exactly the absolute homotopy
group. Also, the Hurewicz homomorphism is an isomorphism in the absolute case because πn(X,x0)
is abelian for n ≥ 2.

˜Corollary 4.3. If X is simply connected, and Hi(X) = 0 for i < n, then πi(X,x0) is trivial for
i < n.

Corollary 4.2 is a nice generalization of the relationship between the fundamental group and
first homology group. In particular, it tells us that the first non-trivial homotopy group gives us
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the first non-zero homology group in the simply connected case. Moreover, by Corollary 4.3, if we
know that X is simply-connected and are able to compute its homology groups, we immediately
find the initial trivial homotopy groups. As a simple application, we have another corollary, given
that the homology groups of the n-sphere are well-known (and that the n-sphere for n > 1 is simply
connected):

Corollary 4.4. The homotopy groups of the n-sphere, πi(S
n, x0), are trivial for i < n, and

πn(X,x0) = Z.

Unfortunately, the Hurewicz homomorphism does not give us any useful information about the
higher homotopy groups. For spheres, for example, the higher homology groups are all 0, whereas
the higher homotopy groups are usually nonzero and are often somewhat peculiar groups (e.g.
π7(S4) = Z× Z12).

Finally, we examine another application of Hurewicz’s theorem which gives a convenient way
to calculate the second homotopy group of a base pointed space which has a universal cover. We
start with a short lemma.

˜Lemma 4.5. Let (X, x̃0) be a covering space of an arbitrary space (X,x0) with covering map p.
˜Then the induced map p : πn(X, x̃0)→ πn(X,x∗ 0) is an isomorphism for n ≥ 2.

Proof. Surjectivity comes first. For n ≥ 2, the sphere Sn is simply connected. This means that
for any map φ : (Sn, q) → (X,x0), the induced map on the fundamental group φ : π∗ 1(Sn, q)

˜
→

π1(X,x0) satisfies the lifting criterion φ (π1(Sn, q)) ⊂ p (π1(X, x̃0)). Therefore, φ has a lift to the∗ ∗
covering space. The class of this lift obviously maps to [φ] under p , giving surjectivity.∗

˜Injectivity is as follows. An element of the kernel of p is represented by a map f : (Sn, q)∗
˜ ˜ ˜

→
X, x̃0 and a homotopy H of pf to the constant loop. We can then lift H to a homotopy from f to
the lift of the constant loop, which is the constant loop in the covering space. Hence the kernel of
p is trivial, giving injectivity.∗

˜Proposition 4.6. Suppose that (X,x0) is a space with a universal cover (X, x̃0) with covering map
˜p. Then there is a canonical isomorphism between π2(X,x0) and H2(X).

˜ ˜Proof. By the lemma, p is an isomorphism of π2(X,x0) with π2(X, x̃∗ 0). But X, being the universal
cover of X, is simply connected. Hence the Hurewicz theorem applies for n = 2, so the Hurewicz

˜ ˜homomorphism h is an isomorphism of π2(X, x̃0) with H2(X). Therefore hp is the isomorphism∗
we want.
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