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Introduction (Lecture 1)


Let X be an algebraic variety defined over a field k. If k is the field C of complex numbers, then X has 
an underlying topological space X(C). We can therefore study X using the methods of algebraic topology: 
for example, for any commutative ring R we can consider algebraic invariants such as the cohomology ring 

H∗(X(C); R). 

Algebraic geometers have expended a great deal of effort in trying to reconstruct these sorts of invariants in 
a purely algebraic way. For example, if X is an elliptic curve over the complex numbers, then the homology 
group 

H1(X(C), Z/nZ) 

is canonically isomorphic to the group of n-torsion points of X. This latter definition has the advantage that 
it makes sense over any field (and behaves well over any algebraically closed field whose characteristic does 
not divide n). 

Building on this example, Grothendieck and his school constructed the theory of étale cohomology. If X 
is an algebraic variety defined over any separably closed field k and R is any commutative ring, then one 
can consider the étale cohomology 

H∗ (X; R).et

These groups behave well provided that the ring R has finite cardinality n, and the characteristic of k does 
not divide n. Moreover, if k is the field of complex numbers, then there is a canonical isomorphism 

H∗ (X; Z/pZ) � H∗(X(C), Z/pZ)et

for every integer p. In other words, étale cohomology provides a purely algebraic recipe for extracting the 
cohomology groups H∗(X(C); Z/pZ). This raises the question: to what extent can we recover the topological 
space X(C) itself in purely algebraic terms? 

Of course, algebro-topological invariants like cohomology do not contain enough information to determine 
a space like X(C) up to homeomorphism. The best we might hope for is to recover X(C) up to homotopy 
equivalence. However, even this is generally too much to ask for: étale cohomology is generally only well-
behaved when the coefficient ring R is a finite ring, such as Z/pZ. To what extent can a topological space M 
be recovered from the cohomology ring H∗(M ; Z/pZ)? To answer this question, it is convenient to introduce 
the notion of p-adic completion for topological spaces, following ideas of Sullivan. 

Let M be a topological space and p a prime number. For simplicity, we will assume that M is simply 
connected, and that each of the homology groups Hn(M ; Z) is finitely generated. In this case, there exists 
a p-adic completion M∨ of M . It is characterized up to homotopy equivalence by the following properties: 

(1) There is a map f : M M∨.→ 

(2) The space M∨ is simply connected. 

(3) For each n > 1, the induced map Hn(M ; Z) Hn(M∨; Z) exhibits Hn(M∨; Z) as the p-adic completion 
of the (finitely generated) abelian group Hn

→
(M ; Z). 
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Remark 1. The p-adic completion of a space M is, in some sense, determined up to homotopy equivalence 
by the mod-p cohomology H∗(M ; Z/pZ). Of course, for this to be true one must consider H∗(M ; Z/pZ) as 
endowed with more structure than just a graded vector space. The precise statement is that M∨ can be 
reconstructed from the cochain complex C∗(M ; Z/pZ), viewed as an E -algebra over the finite field Z/pZ.∞
This follows from the p-adic homotopy theory of Mandell and Dwyer-Hopkins, which we will study later in 
this course. 

Building on the work of the Grothendieck school, several mathematicians (Sullivan, Artin-Mazur, Fried­
lander, and others) have explained how to use the formalism of étale cohomology to extract an p-adic 
étale homotopy type from an algebraic variety X defined over an arbitrary separably closed k of charac­
teristic different from p. In particular, if k is the field of complex numbers and the topological space X(C) 
is simply connected, the p-adic étale homotopy type of X coincides with the p-adic completion of X(C) as 
defined above. This is a strong sense in which one can recover a close approximation to X(C) by purely 
algebraic methods. 

Suppose that the algebraic variety X is defined instead over the field R of real numbers. In this case, 
one has an underlying topological space of real points X(R). To what extent can this topological space be 
reconstructed in purely algebraic terms? We note that there is a canonical inclusion 

X(R) ⊆ X(C). 

The group Z/2Z acts on X(C), via complex conjugation, and we can identify X(R) with the fixed set 
X(C)Z/2Z with respect to this action. For every prime number p, étale homotopy theory allows us to 
resconstruct the p-adic completion X(C)∨. Moreover, complex conjugation determines an action of Z/2Z 
on X(C)∨. It therefore seems natural to consider the fixed point set 

(X(C)∨)Z/2Z . 

However, it is important to keep in mind that the p-adic completion X(C)∨ is defined only up to homotopy 
equivalence. Consequently, the fixed point set (X(C)∨)Z/2Z is not well-defined: given a Z/2Z-equivariant 
map M N which is a homotopy equivalence of topological spaces, the induced map → 

MZ/2Z NZ/2Z → 

need not be a homotopy equivalence. (In fact, we can always arrange that the left side is empty.) To rectify 
the situation, it is convenient to introduce the notion of homotopy fixed points. 

Let G be a group acting on a topological space M . The fixed point set MG can be identified with space 
of G-equivariant maps MapG(∗,M ); here ∗ denotes a point with G acting trivially. As noted above, the 
functor M �→ MG need not preserve homotopy equivalences. One explanation for this is that the G-space ∗ 
is badly behaved. To get a better functor, we need to replace ∗ by a better G-space. 

Definition 2. Let G be a group. We let EG denote a contractible space on which G acts freely, and BG 
the quotient space EG/G. 

The topological space EG always exists, and is unique up to G-equivariant homotopy equivalence. 

Example 3. Let G be the group Z/2Z. Then we can choose EG to be an infinite dimensional sphere S∞, 
with G acting via the antipodal map. In this case, the quotient BG = EG/G can be identified with the 
infinite dimensional real projective space RP ∞. 

Definition 4. Let G be a group acting on a topological space M . The homotopy fixed set MhG is the space 
of G-equivariant maps MapG(EG,M). 

The homotopy fixed set construction does not suffer the defect of the usual fixed point construction: 
given a G-equivariant map M N which is a homotopy equivalence, the induced map → 

MhG NhG → 
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is again a (weak) homotopy equivalence. Moreover, the homotopy fixed point construction is closely related 
to the usual fixed point construction: every G-fixed point on a space M determines a (constant) G-equivariant 
map EG M . This construction yields a natural transformation → 

MG MhG .→ 

Let us now return to our algebraic variety X, defined over the field of real numbers R. We have a sequence 
of maps 

X(R) � X(C)Z/2Z → X(C)hZ/2Z → (X(C)∨)hZ/2Z . 

Here X(C)∨ denotes the p-adic completion of X(C). The left hand side of the above diagram is what we 
are interested in: the space of R-valued points of the algebraic variety X. The right hand side is what we 
can understand in purely algebraic terms, using étale homotopy theory. It is natural to ask what happens in 
between: how good an approximation is (X(C)∨)hZ/2Z to X(R)? If p is odd, then X(C) is generally not a 
very good approximation at all: 

Example 5. Let X be the projective line P1. Then the space X(C) is isomorphic to the two-sphere S2 . If p 
is an odd prime, then the homotopy groups of the p-adic completion X(C)∨ are all 2-divisible. In this setting, 
the homotopy fixed point construction behaves like an exact functor: we have canonical isomorphisms 

πn(X(C)∨)hZ/2Z � (πnX(C)∨)Z/2Z . 

In particular, X(C)∨)hZ/2Z is simply connected. However, the actual fixed point set X(C)Z/2Z � X(R) is 
homeomorphic to a circle, which is definitely not simply connected. 

What if p = 2? In this case, the algebraic answer (X(C)∨)hZ/2Z turns out to be a reasonably close 
approximation to the topological space X(R). This is a consequence of the following conjecture of Sullivan: 

Conjecture 6 (Sullivan). Let p be a prime number. Let M be a topological space with an action of a finite 
p-group G. Assume that M is sufficiently nice (for simplicity, a simply connected finite G-CW complex). 
Then the canonical map 

MG (M∨)hG → 

induces an isomorphism on mod-p cohomology. 

This conjecture is interesting (and highly nontrivial) even in the case where the group G acts trivially 
on the space M . In this case, the homotopy fixed set (M∨)hG can be identified with the space of maps 
Map(BG,M∨), and the actual fixed point set can be identified with M itself. In this case, the conjecture is 
a consequence of the following theorem of Haynes Miller: 

Theorem 7 (Miller). Let M be a finite dimensional CW complex, and let G be a finite group. Then the 
space of maps Map(BG,M) is homotopy equivalent to M . 

The general case of Sullivan’s conjecture has also been proven (by Carlsson, Lannes, and Miller). The 
ultimate goal of this course is to give proofs of Conjecture 6 (and Theorem 7). Let us outline our strategy. 
For simplicity, let us consider the proof of Theorem 7 in the special case where G = V � (Z/pZ)n is an 
elementary abelian p-group and M is simply connected. To prove that the mapping space Map(BG,M) is 
equivalent to M , it suffices to prove the result after completing M at each prime number q. The essential 
case is that in which p = q. In this case, the essence of the problem is to compute the cohomology ring 

H∗(Map(BG,M∨); Z/pZ), 

and to show that it agrees with the cohomology ring 

H∗(M∨; Z/pZ) � H∗(M, Z/pZ). 
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This raises the question of whether it is possible to compute the cohomology of the mapping space 

H∗(Map(BV, Y ); Z/pZ). 

Of course, we would expect the answer to be at least as complicated as the cohomology of Y (since, in the 
case where V is the trivial group, we recover precisely the cohomology of Y ). So the best we might hope for 
is some recipe which will allow us to recover H∗(Map(BV, Y ); Z/pZ) from H∗(Y ; Z/pZ). 

It turns out that there is such a recipe. However, it requires a very thorough knowledge of the cohomology 
groups H∗(Y ; Z/pZ). To be precise, we need to introduce the notion of a cohomology operation. 

Definition 8. Fix a nonnegative integer k. A stable cohomology operation (of degree k) is a collection of 
maps 

Hm(X, Y ; Z/pZ) Hm+k(X, Y ; Z/pZ),→ 

defined for every pair of spaces (X, Y ) and every integer m. We require that these operations depend 
functorially on the pair (X, Y ), and behave well with respect the the boundary maps in long exact sequences. 

The collection of stable cohomology operations forms a graded ring, where multiplication is given by 
composition. This ring is called the mod-p Steenrod algebra and is usually denoted by A. If Y is any 
topological space, then the cohomology H∗(Y ; Z/pZ) has the structure of a module over A. In fact, a bit 
more is true: H∗(Y ; Z/pZ) is an unstable module over the Steenrod algebra (we will discuss this condition 
later). The collection of unstable modules over the Steenrod algebra can be organized into a category U. 

Theorem 9. [Lannes] Let p be a prime number, and let V be an elementary abelian p-group. There exists 
a functor TV : U U with many pleasant properties: → 

(1) The functor TV is exact. 

(2) The functor TV commutes with tensor products. 

(3) The functor TV commutes with suspension. 

(4) For every topological space Y , there is a canonical map 

TV H∗(Y ; Z/pZ) H∗(Map(BV, Y ), Z/pZ).→ 

Moreover, this map is an isomorphism if Y is a sufficiently nice p-complete space. 

The functor TV is called Lannes’ T -functor. Because of its many good properties, Lannes’ T -functor 
is an extremely useful tool. In particular, it can be used to give very elegant proofs of Conjecture 6 and 
Theorem 7. We now sketch how to use Theorem 9 to prove THeorem 7 in a special case. Assume that M is 
the p-adic completion of a simply connected finite CW -complex. We wish to show that the canonical map 

M Map(BV,M)→ 

induces an equivalence on mod-p cohomology. In view of Theorem 9, it will suffice to show that the canonical 
map 

TV H∗(M ; Z/pZ) H∗(M ; Z/pZ)→ 

is an isomorphism. This is purely an assertion about the object H∗(M ; Z/pZ) ∈ U. By assumption, 
H∗(M ; Z/pZ) is finite dimensional, and therefore admits a filtration by one-dimensional objects of U. Each 
one dimensional object is a suspension of the trivial module H∗(∗; Z/pZ) ∈ U. Since TV is exact and 
commutes with suspensions, we can reduce to the case where M is a single point, where the result is obvious. 

Let us now conclude by giving a rough outline of what we will cover in this course (a more detailed 
outline, which may turn out to be grossly inaccurate, is given in the syllabus). We will begin by giving a 
construction of the Steenrod algebra A, and establishing its basic properties. Though our ultimate goal is to 
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prove Sullivan’s conjecture, we will take the scenic route: for example, we will begin not with the classical 
Steenrod algebra but with the “generalized Steenrod algebra” of May, which acts on the homotopy groups of 
any E -algebra over the field Z/pZ. Once we understand the Steenrod algebra well enough, we will proceed ∞
to study its category U of unstable modules, and introduce the functor TV . To establish the basic properties 
of TV (such as exactness), we will need to have a good understanding of the structure of the category U; in 
particular, we will make a thorough study of injective objects of U. Once we are done, we will turn to the 
proof of Theorem 9. It turns out that the hypothesis that X be “sufficiently nice” can be dropped if we work 
in the setting of p-profinite homotopy theory. After explaining these ideas, we apply them to give proofs of 
Conjecture 6 (in the p-profinite setting) and Theorem 7 (in the setting of classical homotopy theory). If time 
permits, we will then go on to study the algebraic structure of the category U in more detail. 

Warning 10. The mod-p Steenrod algebra A has a somewhat different structure at the prime 2 than at odd 
primes. It is often difficult to give uniform arguments which apply at all primes simultaneously. To simplify 
the exposition, we will assume that the prime p is equal to 2 whenever it is convenient to do so. Generally 
speaking, we will do all calculations at the prime 2, though more conceptual arguments will usually work for 
any prime p. 
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