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Free Unstable Algebras (Lecture 12)


In the last lecture, we introduced the free unstable A-module FAlg(n) on a generator µn having degree 
n. Moreover, we asserted the following: 

Proposition 1. For n ≥ 0, the vector space FAlg(n) has a basis consisting of 

{SqI1 (µn) . . . SqIk (µn)}, 

where I1 < . . . < Ik are admissible positive sequences of excess ≤ n. Here we adopt the convention that the 
excess of the empty sequence is −∞. 

Moreover, we have already proven half of this result: namely, that the products SqI1 (µn) . . . SqIk (µn) 
generate FAlg(n). To complete the proof, we must show that these elements are linearly independent. For 
this, it will suffice to construct a map φ : FAlg(n) M , where M is an unstable A-algebra, such that the →
images φ(SqI1 (µn) . . . SqIk (µn)) are linearly independent in M . Since FAlg(n) is freely generated by µn, the 
map φ is determined by a single element x = φ(µn) ∈ Mn . 

We have seen that for every topological space X, the cohomology ring H∗(X) is an unstable A-algebra. It 
is therefore natural to try to prove Proposition 1 by producing a space X and a cohomology class x ∈ Hn(X) 
such that the elements {SqI1 (x) . . . SqIk (x)} are linearly independent in H∗(X). To guarantee this, we want 
to choose X such that the cohomology class is as nontrivial as possible. There is a natural candidate for X: 
namely, the Eilenberg-MacLane space K(F2, n). This Eilenberg-MacLane space represents the cohomology 
functor X �→ Hn(X) in the following sense: there is a canonical element χ ∈ Hn(K(F2, n)), and for every 
nice topological space, the pullback of χ induces a bijection 

[X,K(F2, n)] � Hn(X). 

Here [X,K(F2, n)] denotes the set of homotopy classes of maps from X to K(F2, n). Consequently, if we 
hope to prove Proposition 1 using the unstable A-algebras provided by the cohomology of any space X, then 
we might as well replace X by K(F2, n). Fortunately, this turns out to work. More precisely, Proposition 
?? is a consequence of the following result: 

Theorem 2 (Cartan, Serre). For each n ≥ 0, the cohomology ring H∗(K(F2, n)) has a basis {SqI1 (χ) . . . SqIk (χ)}, 
where I1 < . . . < Ik are admissible positive sequences of excess ≤ n. 

Corollary 3. The canonical map φ : FAlg(n) H∗(K(F2, n)) is an isomorphism. → 

To put Corollary 3 in perspective, let us recall a definition. A cohomology operation is a collection of 
maps 

Hn(X) Hm(X),→ 

defined for all topological spaces X and functorial in X. For example, every Steenrod operation Sqi deter­
mines a cohomology operation 

Sqi : Hn(X) Hn+i(X).→ 
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Using Yoneda’s lemma, we see that the set of cohomology operations from Hn to Hm can be identified with 

[K(F2, n),K(F2,m)] � Hm(K(F2(n))) � FAlg(n)m . 

In other words, we can build every cohomology operation out of Steenrod squares, sums, and products. 
Moreover, the only relations among these operations are the ones we have built into the definition of an 
unstable A-algebra: 

(i) The Adem relations � 
Sqa Sqb(x) = (2k − a, b − k − 1) Sqb+k Sqa−k(x) 

k 

for a < 2b. 

(ii) The Cartan formula Sqn(xy) = 
� 

Sqn� (x) Sqn�� (y).n=n�+n�� 

(iii) The boundary conditions ⎧ ⎪⎪⎪⎪⎪⎪0 if n < 0 ⎨x if n = 0 

Sqn(x) = ? if 0 < n < deg(x)⎪⎪⎪⎪⎪⎪x2 if n = deg(x) ⎩0 if n > deg(x). 

We will later show that there is an analogous relationship between unstable ABig-modules and the cohomology 
of E -algebras over F2.∞

We now turn to the proof of Theorem 2. We begin by modifying the formulation a bit. Recall that the 
excess of a sequence of integers I = (im, . . . , i0) is the difference 

im − im−1 − . . . − i0 = (im − 2im−1) + . . . + (i1 − 2i0) + i0. 

This definition is rigged so that if I has excess > deg(x), then SqI (x) = Sqim (SqI� x) = 0, where I � = 
(im−1, . . . , i0), since 

im > im−1 + . . . + i0 + deg(x) = deg(SqI� x). 

If the excess of I is exactly deg(x), then we instead have the equality SqI (x) = Sqim SqI� (x) = (SqI� x)2 . 
Applying this argument repeatedly, we see that every expression SqI1 (χ) . . . SqIk (χ) appearing in Theorem 

2 can be rewritten uniquely as a product (SqI1
�
(χ))2

a1 
. . . (SqIk

�
(χ))2

ak , where each Ij
� is an admissible positive 

sequence of excess < n, and the aj are nonnegative integers, and the pairs (aj , Ij
� ) are disjoint. Since every 

nonnegative integer b has a unique expansion as a sum of distinct powers of 2, we obtain the following 
reformulation of the Cartan-Serre theorem: 

Theorem 4. For n ≥ 0. The cohomology ring H∗(K(F2, n)) has a basis consisting of products {SqJ1 (χ)b1 . . . SqJk (χ)bk },

where J1 < . . . < Jk are admissible positive sequences of excess < n, and the bj are nonnegative integers.

In other words, H∗(K(F2, n)) is a polynomial ring on generators {SqJ (χ)}, where J ranges over admissible

positive sequences of excess < n.


We now turn to the proof of this theorem. The case n = 0 is trivial. To handle the case n = 1, we 
observe that every nonempty positive admissible sequence (in, . . . , i0) has positive excess. Thus, there is 
only one sequence with excess < 1: the empty sequence J (which, by convention, has excess −∞). We 
have SqJ (χ) = χ, and Theorem 4 reduces to the following assertion: the cohomology ring H∗(K(F2, 1)) is 
a polynomial ring on its canonical element χ ∈ H1(K(F2, 1)). But K(F2, 1) is simply the classifying space 
BΣ2 � RP ∞, whose cohomology ring is indeed isomorphic to a polynomial ring F2[t] on a single generator. 

To treat the general case, we will use induction on n and the Serre spectral sequence. We begin by 
reviewing the Serre spectral sequence in general. 
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� 

Fact 5 (Serre). Suppose given a homotopy fiber sequence of topological spaces 

F E B. → → 

Then there exists a (first quadrant) spectral sequence 

{Ep,q, dr}r≥2r 

with Ep,q � Hp(B; Hq (F ; F2)) which converges to the cohomology Hp+q(E; F2). Moreover: 2 

(1)	 {Ep,q, dr}r≥2 is a spectral sequence of algebras.r 

(2)	 If the base B is simply connected and the cohomology groups Hq(F ; F2) are finite dimensional, then 
obtain a canonical isomorphism Ep,q � Hp(B) ⊗ Hq(F ).2 

Since the Serre spectral sequence {Ep,q , dr}r≥2 is a first quadrant spectral sequence, we see that for each r 

r ≥ 2, the groups E0,q can be identified with subgroups of E0,q (namely, the subgroups consisting of elements r 2 
killed by the differentials d2, . . . , dr−1), and the groups Ep,0 can be identified with quotients of Ep,0 (the r	 r 
quotient by the images of the differentials d2, . . . , dr−1). 

We will be interested in studying the Serre spectral sequence in the case where the total space E of the 
fibration is contractible. In this case, we deduce that Ep,q � 0 unless p = q = 0. In particular, for each 

: E0,m−1 Em,0 
∞ 

m ≥ 2 the “final differential” dm m → m must be an isomorphism. The composition 

d−1 

Em,0 m E0,m−1 0,m−1τ : Hm(B) � E2 
m,0 → m → m ⊆ E2 � Hm−1(F ) 

is called the trangression map. Elements of Hm−1(F ) which lie in the image of τ are called transgressive. 
There is a canonical example of a spectral sequence with a trangressive element x of degree m − 1, which 

we will denote by {E(m)p,q , dr}r≥2. Namely, we take r 

E(m)p,q F2[y] ⊕ F2[y]x if r ≤ m 
= r F2 if r > m 

where x has degree (0,m − 1) and y has degree (m, 0). The differentials dr vanish unless r = m, and dr is 
given by the formula � 

a0 if z = y
dm(z) = 

ya+1 if z = yax. 

In this spectral sequence, the transgression map carries y to x, and vanishes in other degrees. Moreover, 
given any spectral sequence of algebras {Ep,q, dr}r≥2 with a transgressive element χ� = τ (χ) ∈ E0,m−1 ,r 2 
there is a unique map of spectral sequences {E(m)p,q }, which is given by the formula y ,r r 

a	
} → {Ep,q a �→ χa 

y x �→ χaχ�. 
Let us now return to our discussion of the Serre spectral sequence of Fact 5, where we can describe the 

transgression map in topological terms. If we assume that the total space E of the fibration is contractible, 
then we can identify the fiber F with the based loop space ΩB. We then have a canonical map ΣΩB B, 
which induces a pullback map on reduced cohomology 

→ 

τ : H�∗(B) → H�∗(ΣΩB) � H�∗−1
(ΩB) = H�∗−1

(F ). 

From this description of the transgression map (and the stability of the Steenrod operations), we see that τ 
commutes with the action of the Steenrod operations. 

We now specialize to the case of interest: let the base B be the Eilenberg-MacLane space K(F2, n), 
where n ≥ 2. We will take the map E → B to be the usual path fibration, so that E is contractible and the 
fiber F is isomorphic to ΩK(F2, n) � K(F2, n − 1). Let χ ∈ Hn(K(F2, n)) be the canonical generator, and 
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let χ� = τ (χ) ∈ Hn−1(K(F2, n − 1)). For every positive admissible sequence I of excess < n, the element 
SqI χ� ∈ H∗(K(F2, n − 1)) is the image of SqI χ under the transgression map. It follows from the above that 
we get a map of spectral sequences 

ψI : {E(n + deg(I))p,q
r }r≥2 → {Er

p,q}r≥2, 

given by y �→ χ, x �→ χ�. 
Ep,qLet { � }r≥2 denote the tensor product of the spectral sequences {E(n + deg(I))p,q}, taken over all r r 

positive admissible sequences I of excess < n. Since the Serre spectral sequence {Ep,q}r≥2 is a spectral r 
sequence of commutative algebras, we can multiply the maps ψI to obtain a single map 

ψ : {E�r
p,q}r≥2 → {Er

p,q}r≥2. 

We now make the following observations: 

(a) The map ψ induces an isomorphism of columns 

E�2
0,∗ → E2

0,∗ � H∗(K(F2, n − 1)). 

This is simply a reformulation of Theorem 2 for the Eilenberg-MacLane space K(F2, n − 1), which 
follows from our inductive hypothesis. 

Ep,q(b) The spectral sequence { �r }r≥2 is a spectral sequence of modules over the ring R = E�2 
∗,0, which is a 

polynomial ring on a set of generators y(I), where I ranges over admissible positive sequences of excess 
≤ n. 

(c) The spectral sequence {Ep,q}r≥2 is a spectral sequence of modules over the ring H∗(B) � E∗,0 . More-r 2 
over, the map ψ induces a ring homomorphism R H∗(B) which carries y(I) to SqI χ.→ 

(d) For each q ≥ 0, E�2 
∗,q is freely generated by E�2

0,q as an R-module. Similarly, E2 
∗,q is freely generated by 

the same vector space E2
0,q � E�2

0,q as an H∗(B)-module. 

Ep,q(e) The map ψ induces an isomorphism � Ep,q, since both sides vanish unless p = q = 0. ∞ → ∞ 

To prove Theorem 4, we must show that the map R H∗(B) is an isomorphism of rings. In fact, we →
will prove the stronger assertion that ψ is an isomorphism of spectral sequences. It will suffice to show that 
ψ induces an isomorphism E�p,q Ep,q for p, q ≥ 0. The proof is by induction on p. If p = 0, the desired 
result follows from (a). 

2 → 2 

Suppose p > 0. In view of (d), it will suffice to show that ψ induces an isomorphism E�2 
p,0 E2 

p,0 .→
For q ≤ p − 1, let D(q) denote the quotient of Ep−q−1,q by the images of the maps {dr}r≥q+1, and let q+1 

D�(q) be defined likewise. Since Ep,0 � 0, we conclude that Ep,0 admits a finite filtration whose successive ∞ 2 

quotients are the vector spaces {D(q)}0≤q≤p−1. Similarly, E�p,0 admits a filtration with successive quotients 2 

{D�(q)}0≤q≤p−1. Using the inductive hypothesis, we see that ψ induces an isomorphism D�(q) D(q). It 
follows that ψ also induces an isomorphism E�2 

p,0 E2 
p,0 as desired. 

→ 
→ 
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