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Finiteness Conditions (Lecture 15)

Our goal in this lecture is to prove that the category U of unstable A-modules is locally Noetherian. We
begin with by recalling a few definitions.

Definition 1. An object X of a Grothendieck abelian category € is Noetherian if every ascending chain of
subobjects
XoCXiCXoC ..

eventually stabilizes.
We will say that a Grothendieck abelian category C is locally Noetherian if every object X € € is the
direct limit of its Noetherian subobjects. direct limit

Remark 2. Suppose given an exact sequence
0-X -X—-X"-0

in a Grothendieck abelian category €. Then X is Noetherian if and only if X’ and X" are Noetherian. The
“only if” direction is clear: any infinite ascending sequence of subobjects of X’ or X" gives rise to an infinite
ascending sequence of subobjects of X. For the converse, we observe that an infinite ascending sequence of
objects

XoCX;CXpC...CX

gives rise to a collection of long exact sequences
0—-X;,NX'—- X, — (ImX; - X") —0.

If X’ and X" are Noetherian, then the subobjects X; N X’ and Im X; — X" are independent of 7 for ¢ > 0,
so that X is also independent of ¢ for ¢ > 0.
In particular, the collection of Noetherian objects of € is closed under finite direct sums.

Example 3. Let R be a (left) Noetherian ring. Then the category C of (left) R-modules is locally Noetherian.
An object X € € is Noetherian if and only if it is finitely generated as an R-module.

The Steenrod algebra A itself is not left Noetherian. For example, the left ideal of A generated by
{Sq"}i>0 is not finitely generated. Nevertheless, we have the following analogue of Example 3:

Theorem 4. (1) The category U of unstable A-algebras is locally Noetherian.
(2) An object M € U is Noetherian if and only if it is finitely generated as a A-module.

The implication (2) = (1) is clear, since every object in U is the direct limit of its finitely generated
subobjects. The “only if” direction follows formally from the following observation:

Lemma 5. An object M € U is Noetherian if and only if every submodule M' C M 1is finitely generated.



Proof. If M’ C M is not finitely generated, then we can find an infinite ascending sequence of submodules
Azxi CAxz1+ Az C ... QM’

by choosing each z; to be an element of M’ which does not belong to the submodule generated by {z;};;.
Conversely, if M is not Noetherian, we can find an infinite ascending sequence of submodules

MyC M, C My, C...

Let M' = |JM; C M. Then M’ cannot be finitely generated: if it were, then it would be generated by
elements belonging to M, for n > 0, so that M,,1; C M,, contrary to our assumption. O

We wish to prove that every finitely generated unstable A-module M is Noetherian. In this case, we can
write M as a quotient of a finite sum @;F(n;). Remark 2 implies that the collection of Noetherian objects of
U is stable under finite direct sums and quotients. In view of Lemma 5, it will suffice to prove the following:

Theorem 6. Let F(n) denote the free unstable A-module on a single generator vy, in degree n. Then every
submodule M C F(n) is finitely generated.

We will prove Theorem 6 using induction on n. The case n = 0 is obvious. To handle the general case,
we will need the following:

Lemma 7. Let M be an unstable A-module. If QM is finitely generated and MO is finitely generated, then
M is finitely generated.

Proof. If QM is finitely generated, then XQM is finitely generated. In the last lecture, we saw that there is
an exact sequence
M —- M — QM — 0.

Choose a finite set of (homogeneous) generators {z;} for XQM, and lift them to (homogeneous) elements
{z; € M}. Let N be the submodule of M generated by M° and {z;}. We claim that N = M. We will
prove by induction that N™ = M™ for all integers n. If n = 0 there is nothing to prove. If n is odd, then
the exact sequence above gives M™ ~ (XQM)™, and the result is obvious. If n = 2k > 0 is even, then our
exact sequence can be rewritten

MF L Ak (soM)* — o,

It is clear that M2 is generated by N2¥ together with the image of Sq¥. The inductive hypothesis guarantees
that Sq* M* = Sq* N¥ C N2?*_ so that M2¥ = N2?¥ ag desired. O

We are now ready to proceed with the proof of Theorem 6.
We define an ascending chain of submodules

M=DMyCM C...CF(n)

as follows: let M, be defined so that ®"M,, is the inverse image of M = My under the iterated Frobenius
map
O"F(n) — ®"'F(n) — ... — F(n).

We have for each m > 0 an exact sequence
M4 — M, — MT/n — 0,

where M denotes the image of M,, in ¥QF (n) ~ XF(n — 1). The inductive hypothesis implies that every
ascending sequence of submodules of F'(n — 1) stabilizes, so that M), = M), ., for m > my.

We claim also that M,,, = M,,+1 for m > mg. To prove this, we show by induction on k that the sequence

k k k
ME CME L CME L, C



is constant. If k = 0 there is nothing to prove. For k > 0, we have exact sequences

k Sq k k
2 /
M2, > My, —M, —0

(here the left term vanishes by convention if k is odd). The desired result follows from the inductive hypothesis
(since & < k).

We now prove that each M, is finitely generated, using descending induction on m. We observe that
YQM,,, ~ My, is a submodule of XF(n — 1), and therefore finitely generated by our inductive hypothesis.

Therefore M,y,, is finitely generated by Lemma 7.
To handle the general case, we use the exact sequence

SOMpy41 — My, — M,’n — 0.

The inductive hypothesis guarantees that M, is finitely generated. Let {x;} be a finite set of generators
for My,41. Then {®(z;)} is a finite set of generators for ®M,, 1. Let {y;} denote the images of these
generators in M,,. Since M}, is a submodule of ¥F(n—1), we deduce that M}, is generated by a finite set of
elements {Z;}. Choose elements {z;} in M,, which lift these elements. It is now clear that M, is generated
by the finite set {y;} U {z;}. This completes the proof of Theorem 6.

Our next goal in this lecture is to prove the following result:

Proposition 8. The collection of finitely generated unstable A-modules is closed under the formation of
tensor products.

In other words, we wish to show that if M and N are finitely generated, then M ® N is finitely generated.
We can write M as a quotient some finite sum @;F (m;), so that M ® N is a quotient of some finite sum
@;(F(m;) ® N). It will therefore suffice to show that each F(m;) x N is finitely generated. Applying the
same argument to IV, we are reduced to proving the following special case of Proposition 8:

Proposition 9. For every pair of nonnegative integers m,n > 0, the tensor product F(m) ® F(n) is finitely
generated.

To prove Proposition 9, we first recall the structure of the free unstable A-module F(n). Let X denote
a product of n copies of RP™, so that H*(X) ~ Falt1,ta,...,t,]. Then we can identify F(n) with the A-
submodule of H*(X) generated by the element ¢; ...¢, € H*(X). Moreover, we have an explicit description
of this submodule: it consists of those polynomials f(¢y,...,t,) which are symmetric and whose exponents
involve only powers of 2. In particular, F(1) can be identified with the A-module of Fs[t] spanned by
{t,t2,t*,...}. We can therefore identify F(n) with the submodule of F(1)®" spanned by the symmetric
polynomials: in other words, we have an isomorphism

F(n) = (F(1)%")*" C F(1)%".
Let us turn to the proof of Proposition 9. We have an inclusion
F(m)® F(n) € (F(1)®™) ® (F(1)%") =~ F(1)™".

Since the collection of finitely generated unstable A-modules is closed under the formation of subobjects, it
will suffice to prove the following:

Proposition 10. For each n > 0, the A-module F(1)®™ is finitely generated.
The proof goes by induction on n, the case n = 0 being obvious. To handle the general case, we use
Lemma 7: it will suffice to show that ¥QF(1)®" is finitely generated. We observe that F(1)®™ can be

identified with the submodule of Fslt1,...,t,] spanned by monomials of the form t%bl . .t%b". We have an
exact sequence

dF(1)%" L F(1)®" — DQF(1)®" -0



The map f can be identified with the usual Frobenius map which sends each element to its square. Its image

consists of the span of those monomials t%bl e tflb" such that each b; is positive.
Consequently, XQF (1)®" can be identified with a submodule of

Dr<i<n F()®" @ XFy @ F(1)®" ! ~ @1, XF(1)9" Y

which is finitely generated by the inductive hypothesis.



