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Injectivity of Tensor Products (Lecture 17)


Our goal in this lecture is to prove the following result: 

Theorem 1. Let n and k be nonnegative integers. Then the tensor product K(n) ⊗ J(k) is an injective 
object in the category of unstable A-modules. 

We begin with some general remarks. For every nonnegative integer p, the Brown-Gitler module J(p) 
comes equipped with a canonical functional J(p)p F2. Given a pair of integers p, q ≥ 0, we obtain an 
induced map 

→ 

(J(p) ⊗ J(q))p+q → J(p)p ⊗ J(q)q → F2 ⊗ F2 � F2, 

which induces a map 
µp,q : J(p) ⊗ J(q) → J(p + q). 

The proof of Theorem 1 depends on the following observation: 

Lemma 2. Fix nonnegative integers n, k, and a. Then the map 

µ a : (J(2pn) ⊗ J(k))a → J(2pn + k)a 
2pn,k 

is an isomorphism for p � 0. 

We now give the proof of Theorem 1, assuming Lemma 2. For each m ≥ 0, let f : J(2m) → J(m) 
be the map of Brown-Gitler modules corresponding to the Steenrod operation Sqm . For 0 ≤ p ≤ q, let 
Fp,q : J(2q n) J(2pn) denote the composition→ 

f f 
J(2qn) → . . . → J(2pn). 

We will construct a sequence of integers 0 = p0 < p1 < p2 < . . . and maps Gi : J(2pi+1 n + k) J(2pi n + k) 
such that the diagrams 

→ 

J(2pi+1 n) ⊗ J(k) �� J(2pi+1 n + k) 

Fpi+1,pi ⊗id Gi 

�� ��
J(2pi n) ⊗ J(k) �� J(2pi n + k) 

are commutative. In fact, the existence and uniqueness of Gi are clear as soon as the upper horizontal map 
is an isomorphism in degree 2pi n + k. Lemma 2 implies that this is true provided that pi+1 is chosen large 
enough. 

By definition, the Carlsson module K(n) is defined to be the inverse limit of the sequence 

. . . J(4n) J(2n) 
f 

J(n).→ → → 

It can equally well be defined as the inverse limit of the subsequence 

. . . J(2p2 n) J(2p1 n) J(2p0 n).→ → → 
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Since J(k) is finite dimensional, we can identify K(n) ⊗ J(k) with the inverse limit of the sequence 

. . . → J(2p2 n) ⊗ J(k) → J(2p1 n) ⊗ J(k) → J(2p0 n) ⊗ J(k). 

The multiplication maps µ2pi n,k determine a homomorphism from this inverse system to the inverse system 

. . . J(2p2 n + k) G1 J(2p1 n + k) G0 J(2p0 n + k).→ → → 

For every a ≥ 0, Lemma 2 guarantees that µ2pi n,k is an isomorphism in degree a for i � 0. Consequently, 
we get an isomorphism of inverse limits 

K(n) ⊗ J(k) � lim{J(2pi + k)}i≥0. 

In the last lecture, we saw that any inverse limit of Brown-Gitler modules is injective. It follows that 
K(n) ⊗ J(k) is injective, as desired. 

aWe now turn to the proof of Lemma 2. The domain of µ2pn,k can be identified with the direct sum 

⊕a=a�+a�� J(2pn)a� 

⊗ J(k)a�� 

. 

Recall that, for every pair of integers x and y, we have canonical isomorphisms 

J(x)y � HomA(F (y), J(x)) = (F (y)x)∨. 

aUsing these isomorphisms, we can identify µ2pn,k with the dual of the canonical map 

φ : F (a)2
p n+k → ⊕a=a� +a�� F (a�)2

pn ⊗ F (a��)k . 

Let us identify F (m) with the subspace of the polynomial ring F2[t1, . . . , tm] consisting of symmetric 
additive polynomials. For each monomial f = ti1 . . . tim , let σ(f) denote the symmetrization of f as in 1 m 
Lecture 7, so that f appears in σ(f) with multiplicity one. Then F (a)2

pn+k has a basis consisting of the 
symmetrizations of monomials of the form 

2i1 2ia 
t1 . . . ta 

where i1 ≤ i2 ≤ . . . ≤ ia, and 2ij = 2pn + k. If p � 0, then Lemma 3 below implies that there exists a 
unique a�� ≤ a such that 

2i1 + . . . + 2ia�� = k 

2ia��+1 + . . . + 2ia = 2pn. 

We now observe that φ carries σ(t21 
i1 

. . . t2a 
ia ) to the tensor product 

σ(t2 
i
a��+1 

. . . t2
ia 

) ⊗ σ(t2
i1 

. . . t2
i
a�� 

),1 a� 1 a�� 

and that these tensor products form a basis for 
n⊕a=a� +a�� F (a�)2

p

⊗ F (a��)k . 

It remains only to verify: 

Lemma 3. Fix nonnegative integers n, k, and a. Then for every sufficiently large integer p and every 
equation 

2pn + k = 2i1 + . . . + 2ia , 

there exists a unique partition {1, . . . , a} = J J �, such that 

2pn = 2ij 

j∈J 

k = 2ij . 
j∈J� 
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Proof. Let 2b be the smallest power of 2 larger than k. We will prove that the assertion is true provided 
that Let J0 = {1 ≤ j ≤ a : ij > b}, and let J � = {1 ≤ j ≤ a : ij ≤ b}.0 � 

It is clear that any decomposition {1, . . . , a} = J J � must satisfy J � ⊆ J � : otherwise, we have 0

2ij > 2b ≥ k. 
j∈J� 

We will show that j∈J0
� 2ij = k provided that p is sufficiently large. Then the containment J � ⊆ J � forces 0 

J � = J0
� , so that (J0, J0

� ) is the unique partition with the desired property. � 
Since every base 2-digit of k must appear in the sum 2i1 + . . . + 2ia , we deduce that j∈J0

� 2ij ≥ k. Let 
k� = ( j∈J0

� 2ij ) − k. We wish to prove that k� = 0. Suppose otherwise. We note that k� ≤ a2b . Moreover, 
the sum � 

k� + 2ij = 2pn 
j∈J0 

is divisible by 2p. It follows that the largest nonzero digit of k� is at least 2p−a . On the other hand, k� is 
bounded above by a2b, which is < 2p−a provided that p � 0. 
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