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Injectivity of Tensor Products (Lecture 17)

Our goal in this lecture is to prove the following result:

Theorem 1. Let n and k be nonnegative integers. Then the tensor product K(n) ® J(k) is an injective
object in the category of unstable A-modules.

We begin with some general remarks. For every nonnegative integer p, the Brown-Gitler module J(p)
comes equipped with a canonical functional J(p)? — Fy. Given a pair of integers p,q > 0, we obtain an
induced map

(J(p) ® J(q))PT4 — J(p)? © J(q)? — Fo @ Fp =~ Fy,

which induces a map
Hpq : J(p) @ J(q) = J(p+q).

The proof of Theorem 1 depends on the following observation:

Lemma 2. Fiz nonnegative integers n, k, and a. Then the map
Wit (J(2P) © J(R))* = J (2P0 + k)"
is an isomorphism for p > 0.

We now give the proof of Theorem 1, assuming Lemma 2. For each m > 0, let f : J(2m) — J(m)
be the map of Brown-Gitler modules corresponding to the Steenrod operation Sq™. For 0 < p < ¢, let
Fpq:J(29n) — J(2Pn) denote the composition

J@2m) L L @),

We will construct a sequence of integers 0 = py < p1 < p2 < ... and maps G; : J(2Pi+in + k) — J(2Pin + k)
such that the diagrams
J(2Pi+in) @ J(k) —— J(2Pi+in + k)

lei_,.l,m@id iGi
T(2Pn) @ J(k) ——> J(2Pn + k)

are commutative. In fact, the existence and uniqueness of G; are clear as soon as the upper horizontal map
is an isomorphism in degree 2Pin 4+ k. Lemma 2 implies that this is true provided that p;;1 is chosen large
enough.

By definition, the Carlsson module K (n) is defined to be the inverse limit of the sequence

— J(4n) — J(2n) EN J(n).
It can equally well be defined as the inverse limit of the subsequence

.— J(2P2n) — J(2P'n) — J(2P°n).



Since J(k) is finite dimensional, we can identify K(n) ® J(k) with the inverse limit of the sequence
= J2P2n) @ J(k) — J(2P'n) @ J(k) — J(2P°n) @ J(k).
The multiplication maps fig»i,, ; determine a homomorphism from this inverse system to the inverse system
= I+ k) DT+ k) £ T (2rn + k).

For every a > 0, Lemma 2 guarantees that psrip ; is an isomorphism in degree a for ¢ > 0. Consequently,
we get an isomorphism of inverse limits

In the last lecture, we saw that any inverse limit of Brown-Gitler modules is injective. It follows that
K(n)® J(k) is injective, as desired.
We now turn to the proof of Lemma 2. The domain of u5,,, , can be identified with the direct sum
BazartarJ (200)" @ J(k)"".
Recall that, for every pair of integers z and y, we have canonical isomorphisms
J(2)" = Homa(F(y), J(z)) = (F(y)")".
Using these isomorphisms, we can identify Hpp  With the dual of the canonical map
¢ . F(a)Qpn+k — @a:a/Jra”F(a/)?pn ® F(a”)k.

Let us identify F(m) with the subspace of the polynomial ring Fs[t1,...,tx] consisting of symmetric
additive polynomials. For each monomial f = ¢}'...t", let o(f) denote the symmetrization of f as in
Lecture 7, so that f appears in o(f) with multiplicity one. Then F(a)2""** has a basis consisting of the
symmetrizations of monomials of the form

2
Tt
where i; < ip < ... <4, and Y. 2% = 2Pn + k. If p > 0, then Lemma 3 below implies that there exists a

unique a”’ < a such that _ _
2 4 2 =k

2l 1 . 4 2% = 2Pp,

We now observe that ¢ carries O’(t%il e tzia) to the tensor product

(2 2 @ a2,

and that these tensor products form a basis for
@a:a’+a”F(a’/)2pn ® F(a”)k'
It remains only to verify:

Lemma 3. Fix nonnegative integers n, k, and a. Then for every sufficiently large integer p and every
equation ' ,
200+ k=2 + ... 4 2%,

there exists a unique partition {1,...,a} = J][[J', such that

2?n=> 25

jeJ

k= 2%,

JjeJ’



Proof. Let 2% be the smallest power of 2 larger than k. We will prove that the assertion is true provided
that Let Jo={1<j<a:i; >b},andlet Jy={1<j<a:i; <b}.

It is clear that any decomposition {1,...,a} = J[]J’ must satisfy J' C J}: otherwise, we have
Z 24 > 20 > k.
jeJ

We will show that Zj e 2% = k provided that p is sufficiently large. Then the containment J' C J| forces
J' = J§, so that (Jo, J§) is the unique partition with the desired property.

Since every base 2-digit of k must appear in the sum 2% + ... 4 2%, we deduce that Zje]é 2% > k. Let
K = (Ejng) 2i7) — k. We wish to prove that k' = 0. Suppose otherwise. We note that k' < a2®. Moreover,
the sum .

K+ 20 =2
j€Jo

is divisible by 2P. It follows that the largest nonzero digit of k' is at least 2P~*. On the other hand, ¥’ is
bounded above by a2’, which is < 2P~% provided that p > 0. O



