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A Pushout Square (Lecture 22)

In the last lecture we saw that the cohomology H* F(n) of the free E.-algebra on one generator was itself
freely generated by one element, as an unstable algebra over the big Steenrod algebra AP, The Cartan-Serre
theorem implies that the cohomology ring H* K (F2,n) is the free unstable A-module on one generator, in
the same degree. This suggests a close relationship between H* F(n) and H* K(F3,n). In fact, we can say
more: there is a close relationship between the Eo-algebras F(n) and C*K(F3,n) for each n > 0.

To make this precise, we begin by observing that the canonical element v € H" K(F4,n) gives rise to a

map of F,.-algebras
f:F(n) — C*K(Fz,n).

Let p denote the canonical generator of H* F(n), so that f carries u to v.

The map f is certainly not a homotopy equivalence. The target H* K (F2,n) is a module over the usual
Steenrod algebra A, so that Sq” acts by the identity on H* K (F2,n). However, Sq” does not act by the
identity on the cohomology of the left hand side. We therefore have

flr—59" ) = f(r) —Sq” f(n) =v —Sq° v =0,

so that f fails to be injective on cohomology.

However, this turns out to be the only obstruction to f being a homotopy equivalence. To make this
precise, we observe that there is map ¢g : F(n) — F(n), which is determined up to homotopy by the
requirement that g(u) = g — Sq° € H" F(n). The above calculation shows that f o g carries u to zero in
H" K(F2,n). We therefore obtain a (homotopy) commutative diagram of E.-algebras

F(n) —2—= F(n)

L

F2 —— C*K(Fg,n)

Our goal in this lecture is to prove:
Theorem 1. The above diagram is a homotopy pushout square in the category of E..-algebras over Fs.

In other words, the cochain complex C*K (F2,n) has a very simple presentation as an F.-algebra over
F,. Tt is “generated” by the tautological class v € H" K(F3,n), and subject only to the “relation” that v is
fixed by Sq".

To prove Theorem 1, we need to understand homotopy pushouts in the world of F-algebras. We first
recall the situation for ordinary commutative rings. Given a pair of commutative ring homomorphisms

A+~ R — B,

the pushout AJ], B in the category of commutative rings is given by the relative tensor product A ®r B.
In the case of E,-algebras, the situation is more or less identical. More precisely:



Given an F.-algebra R, there is a good theory of R-modules (or R-module spectra).

e Given any map R — A of E,-algebras, we can regard A as an R-module.

Given an E.-ring R, the collection of R-module spectra is endowed with a tensor product operation
(M,N)+— M®gN. (More traditionally, this is denoted by M Ar N and called the smash product over
R).

e Given a pair of E-algebra maps
A+~ R — B,

the homotopy pushout of A and B over R in the setting of E-rings is again an R-algebra, and the
underlying R-module is given by the tensor product A @ B.

Given these facts, we can restate Theorem 1. We have a canonical map
F(n) @) F2 — C*K(Fa,n),

and we wish to show that this map is a homotopy equivalence. In other words, we wish to show that it
induces an isomorphism after passing to cohomology. The cohomology of the right side is given by the
Cartan-Serre theorem: H* K (Fy,n) can be identified with the polynomial ring on generators {Sq’ v}, where
I ranges over admissible positive sequences of excess < n. It therefore remains to compute the cohomology
of the left hand side.

The calculation will be based on the following lemma:

Lemma 2. Let R be an Eo-algebra over Fo, and let M and N be R-modules. Then H* M and H* N are
modules over the cohomology ring H* R. Suppose that H* M s free as a graded H* R-module. Then the
canonical map

H*M ®@p- g H* N - H*(M @ N)
is an isomorphism.

Proof. Choose elements {z; € H"* M} which freely generate H* M as an H* R-module. Each z; determines
a map of R-modules R[—n;] — M. Adding these together, we obtain a map ®&R[—n;] — M. By assumption
this map induces an isomorphism on cohomology, and is therefore a homotopy equivalence. Thus, M is a
direct sum of free R-modules (in various degrees).

Let us say that an R-module M is good if the canonical map

is an isomorphism. Both the left hand side and the right hand side above are functors of M, which commute
with shifting and with the formation of direct sums. Therefore, to show that @R[—n;] is good, it will suffice
to show that R is good. But this is clear, since

H* R @y~ g H* N ~ H* N ~ H*(R ®% N).
O

To prove Theorem 1, we will show that Lemma 2 applies: namely, that H* F(n) is free when regarded s
an H* F(n)-module via the map g. It then follows that we have an isomorphism

H*(F(n) ®g(n) F2) ~ H" F(n) @u- 5(n) F2 = H F(n)/1,

where T is the ideal of H* F(n) generated by the elements g(z), where x € H* F(n) has positive degree.

In the last lecture, we proved that H* F(n) is isomorphic to the free unstable AP%-module Ffligg (n). It is
therefore isomorphic to a polynomial ring on generators {SqI u}, where I ranges over admissible sequences
of excess < n. For every such sequence I, we let X; = ¢(Sq” 1) = Sq” pu — Sq’ Sq° u € H* F(n). To complete
the proof of Theorem 1, it will suffice to verify the following:



Proposition 3. The cohomology ring H* F(n) is a polynomial ring on generators {Xr}radmissibie of excess <n
I
and {Sq U}Iadmissible and positive of excess <n-

Proof. Let J denote the collection of all admissible sequences of integers of excess < n. We have a decom-
position J = J'[[3", where J’ consists of those sequences (i1, ...,i) such that k& > 0 and i;, < 0. The
complement J” has a further decomposition

3// — 3”(0) Hg//(l) H o

where J”(m) consists of those sequence (i1, ...,i;) which end with precisely k zeroes. For each I € J"(k),
let It € 3”(k + 1) be the result of appending a zero to the sequence I. We have a decomposition

H* F(n) = F2[Sq’ plreg © F2[Sq’ plregr-
To complete the proof, it will suffice to show:
(1) The polynomial ring F3[Sq’ 1] ¢y is also polynomial on the generators { X}y
(2) The polynomial ring F5[Sq’ pi];ez is also polynomial on the generators {X;} g and {Sq’ K} regr (o)-

Assertion (2) follows immediately from the observation that X; = Sq’ yn — Sq’ ' pfor I € 3”. We can
divide the proof of (1) further into three steps:

(la) The map 6 : Fo[X];cy — Fao[Sq’ pliegy is well-defined. In other words, if I € ', then X belongs to
F5[Sa" plreg-
(1b) The map 6 is injective.
(Ic) The map 6 is surjective.
Assertion (la) is an immediate consequence of the following:

Lemma 4. Let I = (i, ...,i1) be a sequence of integers with i; < 0. Then in AP we have an equality
Sa’ $q° = 3" 8q”
«@

where each J,, is an admissible sequence of the form (jm, ..., jo), where jo < 0.

Proof. We first apply the Adem relations to write

Sq' 8q° = Z(2k — i1, —k —1)Sq" Sq*.
k

The coefficient (2k — i3, —k — 1) vanishes unless

11

b <k<O.
We may therefore restrict our attention to those integers k for which iy — k < % < 0, so the sequence
I'(k) = (im, ..., 12, k, 41 — k) ends with a negative integer.

Each I’(k) can be rewritten as a sum of admissible monomials using the Adem relations. Let us analyze
this process. Given a sequence
J=my---,a,b,...,70)
with a < 2b, we have
Sq’ = Z(Qk —a,b—k—1)Sq’*,
k

where J, is obtained from J by replacing a by b+k and b by a — k. The coefficient (2k —a,b— k — 1) vanishes
unless § < k < b; in particular, we always have a — k < § < b. Thus, if the final entry in J is negative, the
final entry in Jj, will be negative. O



We now prove (1b). Recall that the cohomology ring H* F(n) ~ F3[Sq’ y]reg has a natural grading by
rank, where Sq’ p has rank 2% for every sequence I = (iy,...,i;). This grading restricts to a grading on
F2[Sq’ 1t]1¢4:. We have an analogous grading on Fo[X[];cg, where we declare rk(X;) = 25 if T = (iy, ..., iz).

The map 6 : Fo[ X ]1eqr — F2[Sq’ p1]1egs is not compatible with the gradings by rank. Instead we have

0(Xr) = Sq’ 1 —Sq" Sq” 1 = Sq’ 1n + higher rank.

We have an evident isomorphism 6’ : Fo[X ] cs — F2[Sq’ u]eq, given by X7 — Sq’ pu. Let 2 € Fa[X[] ey
be a nonzero element, and write x as a sum = = 2y, + 2k, + ... + 2, of homogeoneous elements of ranks
ko < k1 < ...<k,,. Then we have

0(z) = 0'(x) + terms of rank ; k.

In particular, 6(z) = 0 implies #’'(xy,) = 0. Since #’ is an isomorphism, we get z3, = 0, a contradiction.
This completes the proof that 6 is injective.
We now prove that 6 is surjective. This is an immediate consequence of the following statement:

Lemma 5. Let I = (ik,...,41) be a sequence of integers with i1 < 0 (not necessarily admissible). Then
Sq” u lies in the image of 6.

Proof. We use descending induction on i;. Observe that
Sa’ i =(Sq" 11— Sq" Sq° p) + (Sa’ Sq” 1) = 6(X1) + Sq” Sq° p.

It will therefore suffice to show that Sq’ Sq° y belongs to the image of #. Using the Adem relations, we can
write

Sq’Sq” = (2k — i1, —k — 1) Sq™*
k

with I, = (ig,...,%2,k,i1 — k). The coefficient (2k — i;, —k — 1) vanishes unless % < k < 0. This inequality
forces .

. . 4]

11<Zl—k§§<0.

Therefore Sq™ belongs to the image of 8 by the inductive hypothesis.

Corollary 6. For each n > 0, the homotopy pullback square

K(Fy,n) ——— *

| |

* ——> K(Fa,n+1)
of topological spaces determines a homotopy pushout square

C*K(Fy,n) < Fy

| T

F2 C*K(F27n+1)

of Ew-algebras.



Proof. Theorem 1 implies that C*K(Fa,n + 1) is freely generated by a single class v in degree (n + 1),
subject to the single relation killing v — Sq’v. We can regard the homotopy pushout

Fo ®c k®,n+1) F2

as the suspension of C*K(Fa,n + 1) in the world of (augmented) E.-algebras. Consequently, it has an
analogous presentation as the free E..-algebra generated by a class 3(v) in degree n, subject to a single
relation killing ¥(v — Sq” v). Since the Steenrod operation Sq is stable, we can identify ¥ (v — Sq° v) with
Y(v) — Sq” £(v). Applying Theorem 1 again, we can identify this suspension with C*K (Fa,n). It is easy to
see that this identification is given by the map

Fo ®c+ g (Fynt1) F2 — C*K(Fa,n)

described in the statement of Corollary 6. O



