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T and the Cohomology of Spaces (Lecture 25)

In the last lecture, we showed that if G denotes the forgetful functor from the category of F ,-algebras
over Fs to spectra, then R = Map(G, G) is an Ay-ring spectrum whose homotopy groups 7. R form a graded
ring, isomorphic to a suitable completion of the big Steenrod algebra AP,

Remark 1. If A is an E..-algebra over Fy, then A is in particular an Fy-module, so that Fo acts on the
underlying spectrum of A. This construction is functorial in A, and so gives rise to a map of A..-algebras
from Fy into R. This map is not central. That is, R is an A..-ring spectrum, but it cannot be regarded as
an Ay-algebra over the ring Fo.

This result has an analogue for the ordinary Steenrod algebra. More precisely, let R' = Map(Fq, F3)
be the A, .-algebra of endomorphisms of the Eilenberg-MacLane spectrum HF5. Then R’ can be identified
with the homotopy inverse limit of reduced cochain complexes

proj limC” (K(F2,n); Fa)[n],

so we get short exact sequences

1
0 — lim{H" ™! K(Fy,n)} — 7_ R — lim{H" ™" K (F3,n)} — 0.

Using the same argument as in the previous lecture, we deduce that the lim'-term vanishes, and the right
hand side can be identified with the inverse limit of vector spaces having basis {SqI n }, where I ranges over
positive admissible monomials of degree k and excess < n. This sequence of vector spaces stabilizes, since
every positive admissible sequence I = (i1, ..., ) has excess i1 —ig — ... — iy < i1 +io+ ...+ iy = deg(I).
Passing to the inverse limit, we get an isomorphism of graded rings

R ~A.

By construction, R acts on the underlying spectrum of every F.-algebra over Fy. In particular, R acts
on F, itself, via a map R — R’ which induces, on the level of homotopy groups, the canonical surjection
ABle — A,

We now turn to the real goal of this lecture. Let X be a topological space, and V a finite dimensional
vector space over Fy. We have a canonical evaluation map

XBY x BV - X
which induces on cohomology a map
H* X — H*(XPY x BV) ~H* X8V @ H* BV.

This is adjoint to a map
Ox : Ty H* X — H* XBY

of unstable A-algebras. We will prove:



Theorem 2. Suppose that X is a 2-finite space. Then the map Ox is an isomorphism.

Remark 3. If X is 2-finite, then any mapping space X 2V is again 2-finite. To see this, we first use induction
on V to reduce to the case where V' ~ F5. Choose a filtration X ~ X,,, — ... — Xy ~ %, where each map is
a fibration whose fiber is an Eilenberg-MacLane space K (Fa,n). Then we have an induced filtration

XBFQ:XEIF?H...—»X(?Fzz*,

and each map is a fibration whose fiber is a generalized Eilenberg-MacLane space K (Fa,n) x K(Fg,n—1) x
... x K(F2,0) (and in particular 2-finite).

We have already proven Theorem 2 in the case where V' = F5 and X is an Eilenberg-MacLane space
K(Fa,n). It follows, by induction on the dimension of V, that Theorem 2 holds in general when X =
K(Fa,n). (It is also possible to prove this by repeating the original argument.)

If X is a disjoint union of path components X, (necessarily finite in number), then 0x can be identified
with the product of the maps 0x_. Therefore, to prove Theorem 2 it suffices to treat the case where X is
path connected. In this case, we have seen that X admits a finite filtration

X~X,—>Xmn1—...> Xg2x

where each X1, is a principal fibration over X; with fiber K(F3,n;). We will prove that each 0x, is an
isomorphism, using induction on ¢: the case ¢ = 0 is obvious. To handle, the inductive step, we study the
homotopy pullback square

Xi+1 *

.

It will suffice to prove the following:

Proposition 4. Suppose given a homotopy pullback diagram

X —X

L

Y —Y
of 2-finite spaces. If Ox, Oy, and Oy are isomorphisms, then so is Ox:.

We begin with a few general remarks. Let A be an E-algebra over Fy, and let M and N be a pair of
A-modules. The relative tensor product M ® 4 N is defined to be the geometric realization of a simplicial
spectrum BZ'(M, N), with

BAM,N)=M®A®...© A® N

(here the factor A appears n-times, and all tensor products are taken over Fs).
For any simplicial spectrum X,, the homotopy groups of the geometric realization |X,| can be computed
by means of a spectrum sequence with E; term given by

D _
BV =7, X,

If R is an A..-algebra, and X, is a simplicial R-module spectrum, then this spectral sequence is a spectral
sequence of 7, R-modules: that is, for each 1 < r < co we have maps

/
EPY® Ty R — Ef+p q



which exhibit each E£7'? as a module over 7, R, and the differentials are compatible with this module structure.

In particular, suppose that A is an E-algebra over Fy, and that M and N are F.-algebras over A.
Then the simplicial object B (M, N) is a simplicial E-algebra over Fo, and in particular a simplicial R-
module, where R is the ring spectrum studied in the previous lecture. It follows that the homotopy groups
(M ®4 N) can be computed by a spectral sequence { EP?,d,.} satisfying the following:

(a) Bach E}7 is a module over the big Steenrod algebra AP.
(b) Each differential d,. is compatible with the action of APie,
(¢) Each E}? is isomorphic (as an AP®-module) to the tensor product
TMOTAR ... T AQm,N,
where the factor 7, A occurs ¢ times.

We now return to the situation of Proposition 4. The convergence result of the previous lecture guarantees
that the natural map
cry’ Qc+y C*X — c*X'

is an equivalence. It follows that H* X’ can be computed by a spectral sequence {EP'? d,.} satisfying
conditions (a) and (b), with

E/"=HYeHY®..oHY®H" X.

It follows that each of the AP®-modules F] ™ is actually an unstable A-module. Since this condition is
stable under passage to subquotients, we obtain the following stronger version of condition (a):

(a’) Each E9 is an unstable A-module.
We have another homotopy pullback diagram

X/BV —_ XBV

L

BV BV
yrBY —— Y BV,

which consists of 2-finite spaces in virtue of Remark 3. Applying the same reasoning, we get another spectral
sequence {E'P? d!} satisfying (a’) and (b), with

BT ~m Yy oY @.. oW YBY @ H* XBY.
The evaluation maps Z2Y x BV — Z give rise to a collection of maps
Er — B9 H* BV.
Passing to adjoints and using the exactness of Ty, we get a map of spectral sequences
TvE:? — B9

Since Ty is compatible with tensor products, our hypothesis on Y’ Y and X guarantees that these maps
are isomorphisms when » = 1. It then follows by induction on r that these maps are isomorphisms for all
r < o0o. For r > ¢, we have a sequence of surjections

*,q *,q
ErT—EN — ...



E S BT -

Since Ty commutes with colimits (being a left adjoint, we conclude by passing to the limit that the map
*,q - . .
Ty EX? — E'27 is an isomorphism.
We now consider the canonical map

Ty °H* X' - x'PY,

The preceding spectral sequences give increasing filtrations
0ChH X ChRHEX C...CcH* X
oc R x? crux? c.. . cux?

by A-submodules. Using the exactness of Ty, we get a map of exact sequences

0—=TyvEFE B X —TyF,H* X —=TyE ——0

| | |

0 N Fi—lH* X/BV R FZ H* X/BV EIIZ‘;)’L' 0

Using induction on ¢ and the snake Lemma, we deduce that each of the maps
TvFH* X' — Fa* x'8Y

is an isomorphism. Passing to the limit over ¢ (and using the fact that Ty, commutes with direct limits), we
deduce that 0x : Ty H* X’ — H* X’PY is an isomorphism, as desired.



