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Profinite Spaces (Lecture 26)


Let p be a prime number. In this lecture we will introduce the category of p-profinite spaces. We begin 
by reviewing an example from classical algebra. 

Let C be the category of abelian groups, and let C0 ⊆ C be the full subcategory consisting of finitely gen­
erated abelian groups. Every abelian group A is the union of its finitely generated subgroups. Consequently, 
every object of C can be obtained as a (filtered) direct limit of objects in C0. Moreover, the morphisms in C 
are determined by the morphisms in C0. If A is a finitely generated abelian group and {Bβ } is any filtered 
system of abelian groups, then we have a bijection 

limHom(A,Bβ ) Hom(A, lim Bβ ). −→ −→ 

More generally, if A is given as a filtered colimit of abelian groups, then we get a bijection 

Hom(limAα, lim Bβ ) � limHom(Aα, lim Bβ ) � lim limHom(Aα, Bβ ). 
α α β

−→ −→ ←− −→ ←−−→

We can summarize the situation by saying that C is equivalent to the category of Ind-objects of C0: 

Definition 1. Let C0 be a category. The category Ind(C0) of Ind-objects of C0 is defined as follows: 

(1) The objects of Ind(C0) are formal direct limits “ lim Cα”, where {Cα} is a filtered diagram in C0. −→ 

(2) Morphisms in Ind(C0) are given by the formula 

Hom(“ limCα ”, “ lim Dβ ”) = lim lim Hom(Cα, Dβ ). −→ −→ 
α β
←−−→

Remark 2. There is a fully faithful embedding from C0 into Ind(C0), which carries an object C ∈ C0 to the 
constant diagram consisting of the single object C. We will generally abuse notation and identify C0 with 
its image under this embedding. 

The category Ind(C0) admits filtered colimits. Moreover, an object “ lim Cα ” in Ind(C0) actually does 
coincide with the colimit of the diagram {Cα} in Ind(C0). 

−→ 

Remark 3. The category Ind(C0) can be characterized by the following universal property: for any category 
D which admits filtered colimits, the restriction functor 

Fun0(Ind(C0), D) Fun(C0, D)→ 

is an equivalence of categories, where the left side is the category of functors from Ind(C0) to D which 
preserve filtered colimits. 

Example 4. Let C be the category of groups (or rings, or any other type of algebraic structure). Then C 
is equivalent to Ind(C0), where C0 ⊆ C is the full subcategory spanned by the finitely presented groups (or 
rings, etcetera). 
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There is a dual construction, which replaces a category C0 by the category Pro(C0) of pro-objects in C0: 
that is, formal inverse limits “ limCα” of filtered diagrams in C0. ←− 

Example 5. Let C0 be the category of finite groups. Then Pro(C0) is equivalent to the category of profinite 
groups: that is, topological groups which are compact, Hausdorff, and totally disconnected. 

The construction C0 �→ Pro(C0) makes sense not only for ordinary categories, but also for homotopy 
theories. In other words, suppose that C0 is a category enriched over topological spaces (so that for every 
pair of objects X,Y ∈ C0, we have a mapping space MapC0 

(X,Y )). Then we can define a new topological 
category Pro(C0). Roughly speaking, the objects of Pro(C0) are given by formal filtered limits “ lim Cα” in 
C0, and the morphisms are described by the formula 

←− 

Map(“ limCα ”, “ lim Dβ ”) = holimβ hocolimα Map(Cα, Dβ ). ←− ←− 

To really make this idea precise requires the machinery of higher category theory; we will be content to work 
with this construction in an informal way. 

We now specialize this construction to the case of interest. Let S denote the category of spaces, Sp the 
category of p-finite spaces, and S∨

p ) of pro-objects in Sp. pthe category Pro(Sp We will refer to S∨ as the 
category of p-profinite spaces. 

There is a canonical functor G : S∨
p S, which carries a formal inverse limit “ lim Cα ” to the space → ←− 

holim Cα. If we restrict to a suitable subcategory of S∨
p by imposing finiteness and connectivity conditions, 

then the functor G is fully faithful; its essential image being (a suitable subcategory of) the category of 
p-complete spaces. We will discuss this point in more detail in a future lecture. 

The functor G has a left adjoint X �→ X∨, which we will refer to as the functor of p-profinite completion. 
The functor ∨ carries a topological space X to the formal inverse limit X∨ = “ lim Xα”, where Xα ranges 
over all p-finite spaces equipped with a map to X. 

←− 
If X is itself p-finite, then we can identify this inverse 

limit with X itself. 

Definition 6. Let X be a p-profinite space. We let Hn(X) = Hn(X; Fp) denote the set of homotopy classes 
of maps from X into an Eilenberg-MacLane space K(Fp, n) in the p-profinite category S∨

p . 

Since K(Fp, n) is p-finite, we see that 

Hn(“ lim Xα”) � limHn(Xα). ←− −→ 

It follows that for any p-profinite space X, the cohomology H∗(X) � ⊕n Hn(X) is a filtere colimit of the 
cohomology rings of a collection of p-finite spaces, and therefore inherits the structure of an unstable algebra 
over the Steenrod algebra. 

Remark 7. If X is a topological space, then the cohomology H∗(X; Fp) (in the usual sense) can be identified 
with the cohomology H∗(X∨) of the p-profinite completion of X, defined as in Definition 6. 

The process of extracting cohomology does not generally commute with the inverse limit functor G : 
S∨

p S, unless we make suitable finiteness assumptions. → 

We now discuss the existence of mapping objects in the p-profinite category. 

Proposition 8. Let X be a p-profinite space, and let V be a finite dimensional vector space over Fp. Then 
there exists a p-profinite space XBV equipped with an evaluation map XBV × BV X with the following 
universal property: for any p-profinite space Y , the induced map 

→ 

θ : Map(Y,XBV ) → Map(Y × BV,X) 

is a weak homotopy equivalence. 
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Proof. If X = “ lim Xα”, then we can take XBV = “ lim XBV ” (here we are using the fact that each XBV is ←− ←− α	 α 

again p-finite). We claim tht XBV has the appropriate universal property. For any p-profinite space Y , we 
can identify θ with a map 

holim Map(Y,XBV ) � Map(Y,XBV ) → Map(Y × BV,X) � holim Map(Y × BV,Xα).α 

It will therefore suffice to prove the result after replacing X by Xα, so we may assume that X is p-finite. 
Let Y = “ lim Yβ ”. Then the map θ can be identified with ←− 

hocolim Map(Yβ , X
BV ) � Map(Y,XBV ) → Map(Y × BV,X) � hocolim Map(Yβ × BV,X), 

where the last equivalence follows from the observation that 

Y × BV � “ lim Yβ × BV ” ←− 

is a product for Y and BV in the p-profinite category. We may therefore assume that Y is p-finite as well, 
in which case the result is obvious. 

Remark 9. Proposition 9 remains valid if we replace BV by an arbitrary p-finite space. However, it is not 
valid if BV is a general p-profinite space; the p-profinite category S∨

p does not have internal mapping objects 
in general. 

Remark 10. Let X = “ lim Xα” and Y = “ lim Yβ ” be p-profinite spaces. Then “ lim Xα × Yβ ” is a product ←− ←− ←−
for X and Y in the category of p-profinite spaces. Applying the Kunneth theorem to the p-finite spaces Xα 

and Yβ , we deduce 

H∗(X × Y ) � limH∗(Xα × Yβ ) � lim H∗ Xα ⊗ H∗ Yβ � H∗ X ⊗ H∗ Y. −→ −→ 

Let us now assume that p = 2. Let X be a p-profinite space. The evaluation map XBV × BV → X 
induces a map on cohomology 

H∗ X H∗(XBV × BV ) � H∗(XBV ) ⊗ H∗(BV ),→ 

which is adjoint to a map ψ : TV H∗(X) H∗(XBV ).→ 

Theorem 11. The map ψ is an isomorphism, for every 2-profinite space X. 

Proof. The proof when X is 2-finite was given in the previous lecture. In general, write X = “ lim Xα”. 
Then we have 

←− 

TV H∗(X) � TV lim H∗(Xα)−→ 
lim TV H∗(Xα)�	 −→ 

H∗(XBV �	 lim α )−→ 
�	 H∗(XBV ). 

Using this result, we get a measure of exactly how the ψ might fail to be an isomorphism when we work 
in the usual category of spaces. For any space X, we have 

TV H∗(X) � TV H∗(X∨) � H∗(X∨)BV H∗(XBV )∨.→ 

In other words, the failure of TV to compute the cohomology of mapping spaces is measured by the failure 
of the formation of mapping spaces to commute with profinite completion. 
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