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p-adic Homotopy Theory (Lecture 27)


In this lecture we will continue to study the category S∨
p of p-profinite spaces, where p is a prime number. 

Our main goal is to connect S∨
p with the category of E∞-algebras over the field Fp, following the ideas of 

Dwyer, Hopkins, and Mandell. 
We begin with a brief review of rational homotopy theory. For any topological space X, Sullivan showed 

how to construct a model for the rational cochain complex C∗(X; Q) which admits the structure of a 
differential graded algebra over Q. The work of Quillen and Sullivan shows that the differential graded algebra 
C∗(X; Q) completely encodes the “rational” structure of the space X. For example, if X is a simply connected 
space whose homology groups Hi(X; Z) are finitely generated, then the space XQ = Map(C∗(X; Q), Q) is a 
rationalization of X: that is, there is a map X XQ which induces an isomorphism on rational homology. →
Here the mapping space Map(C∗(X; Q), Q) is computed in the homotopy theory of differential graded 
algebras over Q. 

Our goal is to establish an analogue of this result, where we replace the field Q by a field Fp of charac­
teristic p. In this case, we cannot generally choose a model for C∗(X; Fp) by a differential graded algebra 
(this is the origin of the existence of Steenrod operations). However, we can still view C∗(X; Fp) as an 
E -algebra, and ask to what extent this E -algebra determines the homotopy type of X. We first observe ∞ ∞
that C∗(X; Fp) depends only on the p-profinite completion of X. For any p-profinite space Y = “ lim Yα”, 
we can define C∗(Y ; Fp) = lim

←− 
C∗(Yα; Fp). If Y is the p-profinite completion of a topological space X, then 

the canonical maps X → Yα
−→ 

induce a map of E∞-algebras 

θ : C∗(Y ; Fp) � lim C∗(Yα; Fp) C∗(X; Fp). −→ → 

Since the the Eilenberg-MacLane spaces K(Fp, n) are p-finite and represent the functor X �→ Hn(X; Fp), we 
deduce that θ is an isomorphism on cohomology. 

Let k be any field of characteristic p. Then, for every p-profinite space Y = “ lim Yα”, we define ←− 

C∗(Y ; k) = C∗(Y ; Fp) ⊗Fp k � lim C∗(Yα; k). −→ 

Warning 1. If Y is the p-profinite completion of a space X, then we again have a canonical map of E∞ ­
algebras 

C∗(Y ; k) C∗(X; k),→ 

but this map is generally not an isomorphism on cohomology, since the Eilenberg-MacLane spaces K(k, n) 
are generally not p-finite. 

Our goal is to prove the following: 

Theorem 2. Let k be an algebraically closed field of characteristic p. The functor 

X �→ C∗(X; k) 

induces a fully faithful embedding from the homotopy theory of p-profinite spaces to the homotopy theory of 
E -algebras over k.∞
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We first need the following lemma: 

Lemma 3. The functor F defined by the formula 

X �→ C∗(X; k) 

carries homotopy limits of p-profinite spaces to homotopy colimits of E -algebras over k.∞

Proof. By general nonsense, it will suffice to prove that F carries filtered limits to filtered colimits and finite 
limits to finite colimits. 

For any category C, the category Pro(C) can be characterized by the following universal property: it is 
freely generated by C under filtered limits. In other words, Pro(C) admits filtered limits, and if D is any 
other category which admits filtered limits, then functors from C to D extend uniquely (up to equivalence) 
to functors from Pro(C) to D which preserve filtered limits. By construction, the functor F is the unique 
extension of the functor X �→ C∗(X; Fp) on p-finite spaces which carries filtered limits to filtered colimits. 

To show that F preserves finite limits to finite colimits, it will suffice to show that F carries final objects 
to initial objects, and homotopy pullback diagrams to homotopy pushout diagrams. The first assertion is 
evident: F (∗) � k is the initial E∞-algebra over k. To handle the case of pullbacks, we note that every 
homotopy pullback square 

X � �� X 

Y � �� Y 

of p-profinite spaces is a filtered limit of homotopy pullback squares between p-finite spaces. We may therefore 
assume that the diagram consists of p-finite spaces, in which case we proved earlier that the diagram 

C∗(X �; Fp) �� C∗(X; Fp) 

C∗(Y �; Fp) �� C∗(Y ; Fp) 

is a homotopy pushout square of E -algebras over Fp. The desired result now follows by tensoring over Fp∞
with k. 

Lemma 4. Let K be a collection of p-profinite spaces. Suppose that K contains every Eilenberg-MacLane 
space K(Fp, n) and is closed under the formation of homotopy limits. Then K contains all p-profinite spaces 
X. 

Proof. Every p-profinite space X is a filtered homotopy limit of p-finite spaces. We may therefore assume 
that X is finite. In this case, X admits a finite filtration 

X � Xm → Xm−1 → . . . → X0 � ∗ 

where, for each i, we have a homotopy pullback diagram 

Xi+1 �� ∗ 

Xi 
�� K(Fp, ni). 

It follows by induction on i that each Xi belongs to K. 
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We now turn to the proof of Theorem 2. Fix a p-profinite space Y . For every p-profinite space X, we 
have a canonical map 

θX : Map(Y,X) Mapk(C∗(X; k), C∗(Y ; k)).→ 

Let K denote the collection of all p-profinite spaces X for which θX is a homotopy equivalence. Lemma 3 
implies that both sides above are compatible with the formation of homotopy limits in X, so K is closed 
under the formation of homotopy limits. It will therefore suffice to show that every Eilenberg-MacLane space 
K(Fp, n) belongs to K. 

For each i, the map θK(Fp,n) induces a map 

Hn−i(Y ; Fp) � πi Map(Y, K(Fp, n)) → πi Mapk(C∗(K(Fp, n); k), C∗(Y ; k)) � πi MapFp 
(C∗(K(Fp, n); Fp), C∗(Y ; k)); 

we wish to show that these maps are isomorphisms. 
We now specialize to the case p = 2, where we have described the cochain complex C∗(K(Fp, n); Fp) as 

an E -algebra over Fp: namely, we have a pushout diagram of E -algebras∞ ∞

F(n) u 
F(n) 

Fp �� C∗(K(Fp, n); Fp) 

where the map u classifies the cohomology operation id − Sq0 . It follows that we have a long exact sequence 
of homotopy groups 

. . . → Hn−i−1(Y ; k) → πi MapFp 
(C∗(K(Fp, n); Fp), C∗(Y ; k)) → Hn−i(Y ; k) 

id − → 
Sq0 

Hn−i(Y ; k) → . . . 

To compute the homotopy groups of MapFp 
(C∗(K(Fp, n); Fp), C∗(Y ; k)), we need to understand the coho­

mology ring H∗(Y ; k) as an algebra over the big Steenrod algebra ABig. We observe that 

H∗(Y ; k) � H∗(Y ; Fp) ⊗Fp k. 

The operation Sq0 acts by the identity on the first factor, and by the Frobenius map x �→ xp on the field k. 
Since k is algebraically closed, we have an Artin-Schreier sequence 

v0 → Fp → k → k → 0 

pwhere v is given by v(x) = x − x . It follows that the operation id − Sq0 on H∗(Y ; k) is surjective, with 
kernel H∗(Y ; Fp). Thus the long exact sequence above yields a sequence of isomorphisms 

πi MapFp 
(C∗(K(Fp, n); Fp)C∗(Y ; k)) � Hn−i(Y ; Fp) 

as desired. 

Remark 5. The proof of Theorem 2 does not require that k is algebraically closed, only that k admits no 
Artin-Schreier extensions (that is, that any equation x − xp = λ admits a solution in k). Equivalently, it 
requires that the absolute Galois group Gal(k/k) have vanishing mod-p cohomology. 

Remark 6. Theorem 2 is false for a general field k of characteristic p; for example, it fails when k = Fp. 
However, we can obtain a more general statement as follows. Suppose that X is a p-profinite sheaf of spaces 
on the étale topos of Spec k; in other words, that X is a p-profinite space equipped with a suitably continuous 
action σ of the Galois group Gal(k/k). In this case, we get a Galois action on the cochain complex 

C∗(X; k). 
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Using descent theory, we can extract from this an E -algebra of Galois invariants Cσ
∗(X; k), which we ∞

can regard as a σ-twisted version of the usual cochain complex C∗(X; k) (these cochain complexes can be 
identified in the case where the action of σ is trivial). The construction 

(X, σ) �→ C∗(X; k)σ 

determines a functor from p-profinite sheaves on Spec k to the category of E -algebras over k, and this∞
functor is again fully faithful. 
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