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Atomicity (Lecture 28)

Let V be a finite dimensional vector space over Fo, and let Ty, denote Lannes’s T-functor. In previous
lectures we have established two very important properties of Ty :

e The functor Ty is exact.
e For every 2-profinite space X, there is a canonical isomorphism
Ty H* X ~H* XBY.
Our goal in this lecture is to deduce a conceptual consequence of these facts, which makes no mention of
modules over the Steenrod algebra.

Definition 1. Let C be a (topological) category which admits finite (homotopy) limits and colimits. We
will say that an object K € € is atomic if the following conditions are satisfied:

(a) For every X € C, there exists an object X* € € and an evaluation map e : X* x K — X with the
following universal property: for every Y € C, composition with e induces a homotopy equivalence

Map(Y, X¥) — Map(Y x K, X).

(b) The functor X +— X preserves finite (homotopy) colimits.
Example 2. Let € be the category of spaces. Then the point K = % is an atomic object of C.

We will be primarily interested in the case where € = 6;,/ is the category of p-profinite spaces. We note
that C admits homotopy colimits. This is perhaps not completely obvious, since the collection of p-finite
spaces is not closed under homotopy colimits. For example, given a diagram of p-finite spaces

XY - X,

the (homotopy) pushout of this diagram in 61\; is obtained as the p-profinite completion of the analogous
homotopy pushout X [[,, X’ in the category of spaces.

Suppose that K is a p-finite space; we wish to study the condition that K be atomic. Condition (a) is
automatic. Condition (b) can be divided into two assertions:

(bg) The functor X ~— X preserves initial objects. This is true if and only if K is nonempty.
(b1) The functor X — XX preseves homotopy pushouts.

Condition (b1 ) implies, for example, that for every pair of p-profinite spaces X and Y, we have (X [[Y)¥ ~
XETIY®; in other words, every map from K to a disjoint union must factor through one of the summands.
This is equivalent to the assertion that K is connected. A priori, the condition of atomicity is much stronger:
it implies, for example, that K cannot be written nontrivially as a homotopy pushout of p-profinite spaces.
Nevertheless, we have the following result:



Theorem 3. Let K be a connected p-finite space. Then K is an atomic object of the p-profinite category.

We will prove Theorem 3 in the next lecture. For now, we will be content to study the special case where
K = BV, where V is a finite dimensional vector space over F, (and the prime p is equal to 2). In this case,
we need to show:

Proposition 4. Let V be a finite dimensional vector space over Fp, and let

X—X

L

Y —Y’
be a homotopy pushout diagram of p-profinite spaces. Then the induced diagram
XBV —_— X/BV
YBV _— YIBV

is also a homotopy pushout diagram.

Remark 5. Let f: X — Y be a map of p-profinite spaces. Then f is an equivalence if and only if induces
an isomorphism H*(Y) — H*(X). The “only if” direction is obvious. For the converse, let us suppose that
f induces an isomorphism of cohomology. We will show that f induces a weak homotopy equivalence

¢z : Map(Y, Z) — Map(X, Z)

for every p-profinite space Z. We may immediately reduce to the case where Z is p-finite (since the class of
weak homotopy equivalences is stable under homotopy limits). In this case, we have a finite filtration

Lty — Lyl — ... — Ly 2 %

by principal fibrations with fiber K (F,,n;); we will show that ¢z, is a weak homotopy equivalence using
induction on ¢. We have a homotopy pullback diagram

Zi+1 —_—> X

|

Zl' —> K(Fp,ni + 1)

Consequently, to show that ¢z, , is a homotopy equivalence, it will suffice to show that ¢., ¢z, and
K (F,n;+1) are weak homotopy equivalences. The first claim is obvious, the second follows from the inductive
hypothesis, and the third follows from our hypothesis on f since

T Map(Y, K (Fp,n; + 1)) ~ H TR (V) ~ H TR (X) ~ m, Map(X, K (Fp,n; + 1)).

Proof of Proposition 4. Let Z denote a homotopy pushout of YBYV and X’ BV over XBY. The evaluation
maps YBY x BV — Y and X'PY x BV — X’ glue together to give a map Z x BV — Y’. We therefore
have a map of homotopy pushout diagrams

XBV « BV —= x'BV « BV X —X'
YBY x By —= Z x BV Yy —Y/,



which induces a map of long exact sequences

4>H*—1X H* Y/ H*Y@H* Xl H*X
—H'XBVgH X —=H"Z@H BV — (H'YBV o H* X'?V) 9 H* B — = H* XBY @ H* BV ——
Since Ty is exact, this diagram is adjoint to another map of long exact sequences

— Ty ' X —TyHY —TyH'YOTyH' X —= Ty H* X ——

| | | |

Using the five-lemma, we deduce that the map Ty H*Y’ — H* Z is an isomorphism. This map fits into a
commutative diagram

Ty H" Y’ H*v'BY
H* Z,

where « is induced by the map of p-profinite space f : Z — Y’ BV, Using the two-out-of-three property, we
deduce that « is an isomorphism. It follows from Remark 5 that f is an equivalence of p-profinite spaces, as
desired. 0

We now wish to prove the atomicity of a larger class of p-finite spaces. First, we reformulate the definition
of atomicity. First, we introduce a bit of notation. For every p-finite space K, we let 6;} /K denote the
category of p-profinite spaces over K, so that an object of szu/K is a map X — K in the p-profinite
category. Given a map ¢ : K — K’, we have a pullback functor ¢* : GX,/K, — 61\;,/10 which is given by
forming the homotopy pullback

X=X xg K.

This functor has a right adjoint, which we will denote by g.. In the case where K’ is a point, ¢, assigns
to a map f: X — K the p-profinite space of sections of f (more precisely, ¢.X has the following universal
property: for every p-profinite space Y, we have

Map(Y, ¢« X) ~ Map(Y x K, X) Xnap(y x i,K) 172},

where 7y denotes the projection onto the second factor. In particular, if X is a product Xy x K, then ¢, X
is equivalent to the mapping space X{£.

Proposition 6. Let K be a p-finite space. The following conditions are equivalent:
(1) K is an atomic object of the p-profinite category.

(2) Let q : K — x denote the projection. Then the functor g. : 6;/7/K — 6; preserves finite homotopy
colimits.

Proof. By definition, K is atomic if and only if the composite functor g.q¢* preserves finite homotopy colimits.
Since ¢* preserves finite homotopy colimits (being a left adjoint), the implication (2) = (1) is obvious. For
the converse, we observe that we have a natural equivalence

q*X ~ XK X KK {idK},

and the functor Y — Y X gx {idx} preserves all homotopy colimits. O



Corollary 7. Suppose given a fiber sequence

FLESB
of connected p-finite spaces. If F' and B are atomic (when regarded as p-profinite spaces), then E is atomic
(when regarded as a p-profinite space).

Proof. Let q denote the projection from B to a point. We wish to show that the functor (g o g)« = ¢« o g
preserves finite homotopy colimits. Since B is atomic, g, preserves finite homotopy colimits. It will therefore
suffice to show that g, preserves finite homotopy colimits. For this, it suffices to show that i*g, preserves
finite homotopy colimits, where ¢ denotes the inclusion of any point b into B. We have an equivalence

where ¢’ denotes the projection E x5 {b} ~ F — {b}. The functor f* preserves all homotopy colimits (since
it is a left adjoint), and g, preserves finite homotopy colimits since F is assumed to be atomic. O

Corollary 8. Let G be a finite p-group. Then the classifying space BG is an atomic object in the p-profinite
category.



