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Topics in Algebraic Topology (18.917): Lecture 3


In this lecture we will establish some more of the basic properties of Steenrod operations. More precisely, 
we will show that the Steenrod squares are stable operations, and prove the Cartan formula which describes 
the interaction between Steenrod operations and multiplication in the cohomology of a space X. As before, 
we work in the setting of cochain complexes over the finite field F2 = Z/2Z with two elements. 

Let Ω denote the loop functor on complexes, so that we have canonical isomorphisms 

(ΩV )n � V n−1 

Hn(ΩV ) � Hn−1(V ). 

Since the extended square functor V �→ D2(V ) preserves acyclic objects, there is a canonical map 

D2(ΩV ) 
φ 

ΩD2(V )→ 

for any complex V (see below for an explicit construction of this map). 
The stability of the Steenrod operations is a consequence of the following result: 

Proposition 1. Let W be a complex and k an integer. Then the diagram 

H∗(ΩW ) ∼ �� H∗−1(W ) 

Sq
k 

Sq
k 

�� ��
H∗+k(D2(ΩW )) �� H∗+k(Ω(D2W )) 

∼ �� H∗+k−1(D2(W )) 

is commutative. 

Proof. Let V = ΩW . Fix a class v in Hn(V ), and let w denote the image of v in Hn−1(W ). Without loss of 
generality, we may suppose that V � F2[−n] is generated by v, so that W � F2[1 − n] is generated by w. 
We observe that Hn+k−1 D2(W ) vanishes for k ≥ n, so that the result is automatic. Let us therefore assume 

that k < n. In this case, Hn+k−1 D2W and Hn+k D2V are 1-dimensional vector spaces, generated by Sq
k
(w) 

and Sq
k
(v), respectively. It will suffice to show that the map 

Hm D2(V ) Hm−1 D2(W )→ 

is an isomorphism for m < 2n. 
Let U denote the complex 

. . . 0 F2w 
∼ F2v 0 → . . . ,→ → → → 

so we have a homotopy pullback diagram 
V �� U 

0 �� W. 
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We obtain an associated diagram 
V ⊗2 �� U⊗2 

��
f 

��
0 �� W ⊗2 .


The complex ΩW ⊗2 can be identified with the kernel of the map f , which is given by the two term complex


. . . → 0 → F2v 2 → F2vw ⊕ F2wv → 0 → . . . .


We therefore obtain a fiber sequence 

V ⊗2 → ΩW ⊗2 → F2
2[−2n + 1] 

of complexes with an action of the group Σ2. The operation of taking homotopy coinvariants is exact, so we 
obtain a fiber sequence 

D2(V ) → ΩD2(W ) → F2[−2n + 1]. 

The associated long exact sequence implies that Hm D2(V ) � Hm−1 D2(W ) for m < 2n, as desired. 

To apply Proposition 1, we wish to study the relationship between symmetric multiplications and sus­
pension. If V is a complex equipped with a symmetric multiplication m : D2(V ) V , then ΩV inherits a 
symmetric multiplication, given by the composition 

→ 

D2(ΩV ) ΩD2(V ) ΩV.→ → 

By construction, we have a commutative diagram 

H∗+1D2(ΩV ) �� H∗+1(ΩV ) 

φ ∼ 

H∗D2(V ) �� H∗V 

where φ is the map appearing in Proposition 1. We immediately deduce the following: 

Corollary 2. Let V be a complex equipped with a symmetric multiplication. Then ΩV inherits a symmetric 
multiplication. Moreover, the canonical isomorphism 

H∗ V � H∗+1(ΩV ) 

commutes with the Steenrod operations Sqk . 

Corollary 3. Let X be a pointed topological space, and ΣX its suspension. Then the canonical isomorphism 

H∗(X; F2) � H∗+1(ΣX; F2) 

commutes with the action of the Steenrod operations Sqk . 

We can apply Corollary 3 to compute the Steenrod operations in some simple cases: 

Example 4. Let v ∈ Hn (Sn; F2) be the generator for the top cohomology of the n-sphere. Thenred

v if k = 0
Sqk(v) = . 

0 otherwise. 

To prove this, use Corollary 3 to reduce to the case n = 0. In this case, Example ?? shows that the operation 
Sq0 is the identity on H0 (S0; F2).red
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Corollary 5. Let X be a topological space, and let v ∈ Hn(X; F2). Then 

x if k = 0 
Sqk(x) = 

0 if k < 0. 

Proof. Recall that the cohomology group Hn(X; F2) can be identified with the set of homotopy classes 
of maps from X into an Eilenberg-MacLane space K(F2, n). More precisely, there exists a tautological 
cohomology class 

χ ∈ Hn(K(F2, n); F2) 

such that pulling back χ induces a bijection 

π0 Map(X,K(F2, n)) Hn(X; F2)→ 

for every CW complex X. By general nonsense, we can reduce to the case X = K(F2, n) and where x = χ. 
Let v ∈ Hn(Sn; F2) be the cohomology class described in Example 4. Then v induces a map 

f : Sn K(F2, n).→ 

The induced map 
Hn+k(K(F2, n); F2) Hn+k(Sn; F2)→ 

is injective (in fact, bijective) for k ≤ 0. We may therefore reduce to the case where X = Sn and x = v. 
The desired result now follows from Example 4. 

Warning 6. The negative Steenrod operations {Sqn}n<0 act trivially on the cohomology of spaces, but are 
nontrivial in other examples. Similarly, Sq0 acts by the identity on the cohomology of spaces, but not in 
general. 

We now turn to the second main topic of this lecture: the Cartan formula. We begin by studying the 
interaction between the extended square functor D2 and tensor products. Let V and W be complexes. We 
have equivalences 

D2(V ) ⊗ D2(W ) � V ⊗2 ⊗ W ⊗2 � (V ⊗ W )⊗2 
hΣ2 hΣ2 h(Σ2×Σ2) 

D2(V ⊗ W ) � (V ⊗ W )⊗2 .hΣ2 

There is a canonical map 
(V ⊗ W )⊗2 → (V ⊗ W )⊗2 ,hΣ2 h(Σ2×Σ2)

given by the diagonal embedding of Σ2 into Σ2 ×Σ2. This induces a map ψ : D2(V ⊗W ) → D2(V )⊗D2(W ). 

Proposition 7. Let V and W be complexes. Let v ∈ Hm V , w ∈ Hn W , so that we can form a class 
v ⊗ w ∈ Hm+n(V ⊗ W ). For every integer k, we have an equality 

ψ Sq
k
(v ⊗ w) = Σk=k�+k�� Sq

k� 

(v) ⊗ Sq
k�� 

(w) 

in the cohomology group Hm+n+k(D2(V ) ⊗ D2(W )). 

Remark 8. The sum in this expression is well-defined, since Sq
k� 

(v) ⊗ Sq
k�� 

(w) vanishes for k� > m or 
k�� > n. There are only finitely many terms which do not satisfy either condition. 

Proof. If k > m + n, then the result is obvious since both sides vanish. Let us therefore assume that 
k = m + n − i, where i ≥ 0. We can rewrite the equation 

ψ Sq
m+n−i

(v ⊗ w) = Σi=i�+i�� Sq
m−i� 

(v) ⊗ Sq
n−i�� 

(w), 
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where the sum is taken over i�, i�� ≥ 0. 
Without loss of generality, we may assume that V = F2[−m] and W = F2[−n]. In this case, we have 

canonical isomorphisms 
H∗(D2(V )) � H2m−∗(BΣ2; F2)e2m 

H∗(D2(W )) � H2n−∗(BΣ2; F2)e2n. 

H∗(D2(V ⊗ W )) � H2m+2n−∗(BΣ2; F2)e2m+2n. 

For each j ≥ 0, let xj denote a generator of Hj (BΣ2; F2). Under the identifications above, we have 

Sq
m+n−i

(v ⊗ w) �→ xie2m+2n 

Sq
m−i� 

(v) �→ xi� e2m 

Sq
n−i�� 

(w) �→ xi�� e2n. 

Moreover, the map ψ simply corresponds to the comultiplication 

Ψ : H∗(BΣ2; F2) → H∗(BΣ2; F2) ⊗ H∗(BΣ2; F2) 

on the homology of the space BΣ2. The cohomology ring H∗(BΣ2; F2) � H∗(RP ∞; F2) is simply isomorphic 
to a polynomial ring F2[t] having a basis {tj }j≥0. The corresponding comultiplication is given in the dual 
basis {xi}i≥0 by the formula 

xi �→ xi� ⊗ xi�� . 
i� +i�� 

We now simply compute 

Sq
m+n−i

(v ⊗ w) = xie2m+2n �→ 
� 

(xi� e2m) ⊗ (xi�� e2n) = Sq
m−i� 

(v) ⊗ Sq
n−i�� 

(w) 
i=i� +i�� 

to obtain the desired formula. 

For any complex V equipped with a symmetric multiplication m : D2(V ) V , we can form a diagram→ 

D2(V ⊗ V ) �� D2(D2(V ))
D2(m) �� D2(V ) 

m 

�� �� m ��D2(V ) ⊗ D2(V )
m⊗m 

V ⊗ V D2(V ) V. 

If m is good (see Lecture 4), then this diagram commutes up to homotopy. Passing to cohomology and 
applying Proposition 7, we deduce the following: 

Corollary 9. Let V be a complex equipped with a good symmetric multiplication. Then, for every pair of 
elements v, w ∈ H∗(V ), the Cartan formula holds: 

Sqk(vw) = Sqk� 

(v) Sqk�� 

(w). 
k=k�+k�� 

Corollary 10. Let X be a topological space, and let x, y ∈ H∗(X; F2). Then, for each n ≥ 0, 

Sqn(xy) = Sqn� 

(x) Sqn�� 

(y). 
n=n�+n�� 
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It is convenient to summarize Corollary 10 by asserting that the total Steenrod square x �→ n≥0 Sqn(x) 
is a multiplicative operation. 

We can now compute the action of the Steenrod algebra in a situation where they are definitely nontrivial: 

Corollary 11. Let H∗(RP ∞; F2) = F2[t]. Then the action of the Steenrod algebra on F2[t] can be described 
by the following formula: � � 

Sqk tn = 
n

tn+k . 
k 

Here n denotes the binomial coefficient k 
n!


k!(n − k)!


if 0 ≤ k ≤ n; by convention we will agree that n vanishes otherwise. k 

Proof. Let Sq denote the operation x �→ n≥0 Sqn(x). Since t has degree 1, Sqn(t) vanishes for n > 1 

and is equal to t2 when t = 1. It follows that Sq(t) = Sq0(t) + Sq1(t) = t + t2 . Since the operation Sq is 
multiplicative, we have � � 

Sq(tn) = (t + t2)n = 
n

tn+k . 
k 

0≤k≤n 

The desired result now follows by extracting individual coefficients. 

Warning 12. Our convention that n vanishes for n < 0 is somewhat nonstandard. For example, it has � � k 
the consequence that n

k is not a polynomial function of n, even for k = 1. 

The cohomology ring H∗(RP ∞; F2) is a very important example which will play a large role in the later 
part of this course. 
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