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p-adic Completion of Spaces (Lecture 31)

In this lecture, we will discuss the relationship between the category 6;/ of p-profinite spaces and the
usual category & of spaces. As we have seen earlier, there is a pair of adjoint functors

\4
6=—=6,.
lim
lim

he composition
X — lim XV
qm

is a functor from the category of spaces to itself. We will denote this functor by X +— X. We think of this
functor as “p-adically completing” the homotopy type of X. The following assertion makes this idea precise:

Theorem 1. Let X be a simply connected space, and assume that every homotopy group m; X is finitely
generated (as an abelian group). Then X is again simply connected, and the unit map X — X induces
isomorphisms

~

7TZ'X Rz Zp ~ 7TZ'X,
where Z,, denotes the ring of p-adic integers.
We will reduce the proof of Theorem 1 to the following calculation:

Lemma 2. For each i > 0, the canonical map
H; K(Z,1) — “limH; K(Z/p*Z,1)”
is an isomorphism in the category of pro-F,-vector spaces.

Proof. If i < 1, then the pro-system on the right is constant (and isomorphic to the H; K(Z,1)). If ¢ > 1,
then the homology group on the left vanishes, and the inverse system on the right can be identified with the
system

which is trivial as a pro-vector space. O
Corollary 3. For each ¢ > 0 and each n > 0, the canonical map

¢:H; K(Z,n) — “liLnHiK(Z/ka,n) 7
is an isomorphism in the category of pro-F,-vector spaces.

Proof. We work by induction on n, the case n = 1 having been handled above. For every abelian group A,
the Eilenberg-Moore spectral sequence has Es-term given by

E3P(A) ~ Torll- KAn=D(p F ),



and converges to H, K(A,n). It follows from the inductive hypothesis that the canonical map
b @1e b 9
Ey”(Z) — “lim By"(Z/p"Z)

induces an isomorphism of pro-vector spaces for each a, b. It follows that we get an isomorphism of pro-vector
spaces at the F-term. The convergence of the spectral sequence them implies that ¢ is an isomorphism of
pro-vector spaces. O

Corollary 4. For each i > 0 and each n > 0, the canonical map
lim H* K (Z/p*Z,n) — H* K(Z,n)
s an isomorphism of F-vector spaces.

Corollary 5. Let X = K(Z,n), where n > 1. Then the p-profinite completion XV can be identified with
the formal inverse limit
Y = “lim K (Z/p*Z,n)".
4

Proof. We have a canonical map XV — Y of p-profinite spaces. To show that it is a homotopy equivalence, it
will suffice to show that it induces an isomorphism on cohomology. This follows immediately from Corollary
4. O

Corollary 6. If X = K(Z,n), then the canonical map X - K(Z,,1) is a homotopy equivalence.
The following result will allow us to promote this result to more general Eilenberg-MacLane spaces:

Lemma 7. Let X andY be spaces such that H*(X;F,) and H*(Y; F,) are finite dimensional in each degree.
Then the canonical ma X xY — X xY is a homotopy equivalence.

Proof. Since the functor lim : GX — & preserves homotopy limits, it will suffice to show that the canonical
map (X X Y)V — XV x YV is an equivalence of p-profinite spaces. For this, it suffices to show that this map
induces an isomorphism on cohomology. In general, we have isomorphisms

HY (XY x YY) ~ H*(XV) @ H* (YY) ~ H*(X) @ H*(Y)

If the cohomology groups of X and Y are finite dimensional in each degree, then the Kunneth theorem allows
us to identify this tensor product with H*(X x Y) ~ H*((X x Y)V), as desired. O

Corollary 8. Let A be a finitely generated abelian group and n > 1. Set AY = A®z Z,. Then the canonical

=

map K(A,n) — K(AY,n) is a homotopy equivalence.
Proof. Using Lemma 7 and the structure theory for finitely generated abelian groups, we can assume either

that A = Z or that A ~ Z/I*Z, where [ is some prime number. In the first case, the desired result follows
from Corollary 6. If | = p, then K(A,n) = K(AY,n) is p-finite and the result is obvious. If [ is distinct from

p, then K(A,n) has trivial cohomology (with coefficients in F,), so that Km) and K(AY,n) are both
contractible. O

Lemma 9. Suppose given a homotopy pullback square

X —X

L

Y —Y



of simply connected spaces, whose cohomology groups (with coefficients in Fp,) are finite dimensional in each
degree. Then the induced square

X ——

yi ——

<) <—— >

is a homotopy pullback diagram.
Proof. As before, it suffices to show that the diagram

X/\/ - X\/

L

Y/V — YV
is a homotopy pullback diagram of p-profinite spaces, which is equivalent to the assertion that the diagram

C*(X') ~—— C*(X)

]

C*(Y') =—— C*(Y)

is a homotopy pushout diagram of E.-algebras over F,. This is equivalent to the convergence of the
cohomological Eilenberg-Moore spectral sequence; we proved this result in the case where all of the spaces
involved were p-finite. However, our proof only used the finite dimensionality of cohomology groups and the
nilpotence of the spaces involved; in particular, it remains valid when each space is simply connected and
has cohomology of finite type. O

We are now ready to prove our main result:

Proof of Theorem 1. Let X be a simply connected space whose homotopy groups are finitely generated.
Then X has a Postnikov tower
. ngX — TSQX — Tng =~ %,

where 7<, X is obtained from X by killing the homotopy groups of X above dimension n. In particular, the
map X — 7<, X is highly connected if n is large, so that H* X ~ lim H" 7<,, X. It follows that we have an

equivalence of p-profinite spaces
XY >~ lim(r<, X)V.
p <

Passing to the homotopy inverse limit, we get a homotopy equivalence

~ o —

X ~lim7<, X.

It will therefore suffice to prove the analogous result after replacing X by 7<,X. We now proceed by
induction on n, using the existence of a homotopy pullback square

TSnX *

| |

T<n1X — K(mp, X,n +1).

The desired result now follows by combining the inductive hypothesis, Lemma 9, and Corollary 8. O



We conclude this section by giving a characterization of X by a universal property. We first recall
Bousfield’s notion of an F,-local space.

Definition 10. Amap f : X — Y of spaces is said to be an F,-equivalence if the induced map on cohomology
H*(Y) — H*(X) is an isomorphism.

A space Z is said to be Fp-local if, for every F,-equivalence f : X — Y, the induced map Map(Y, Z) —
Map(X, Z) is a homotopy equivalence.

Example 11. Every Eilenberg-MacLane space K (F,,n) is Fp-local (since the homotopy groups of the
mapping space Map(X, K(F,,n)) can be identified with cohomology groups of X with coefficients in F,).

It is clear that the collection of F,-local spaces is closed under homotopy limits. Since every p-finite
space X can be built from Eilenberg-MacLane spaces K(F,,n) using finite homotopy limits, we conclude
that p-finite spaces are F-local. It follows that any homotopy limit of p-finite spaces is again F-local. In
particular, for any space X, the space X = @XV is Fp-local.

Definition 12. We say that a map of spaces f : X — X' ezhibits X' as an Fp-localization of X if f is an
F,-equivalence and X’ is F,-local.

Remark 13. For any space X, there exists an F-localization X’ of X, and X' is uniquely determined up
to weak homotopy equivalence.

Proposition 14. Let X be a simply connected space whose homotopy groups are finitely generated. Then
the unit map f : X — X ezhibits X as an Fj,-localization of X.

Proof. We have seen above that X is F,-local. It will therefore suffice to show that f induces an isomorphism
on cohomology with coeflicients modulo p. Using the Serre spectral sequence repeatedly, we can reduce to
the case where X is an Eilenberg-MacLane space K(A,n), where A is a finitely generated abelian group.
Then X = K(AY,n). We then have a fiber sequence

X - X — K(AY/A,n).

Using the Serre spectral sequence again, it will suffice to show that the space K(AY/A,n) has trivial coho-
mology with coefficients in F,. We can then invoke the following Lemma:

Lemma 15. Let B be an abelian group such that multiplication by p is an isomorphism from B to itself,
and let n > 1. Then H, K(B,n) vanishes for x > 0.

Proof. Since the functor B — H, K(B,n) commutes with filtered colimits, we may assume without loss of
generality that B is a finitely generated module over Z[1]. Using the Eilenberg-Moore spectral sequence,
we can assume n = 1. Using the structure theorem for finitely generated abelian groups and the Kunneth
formula, we may assume either that B = Z[%] or that B = Z/I*Z, where | # p. In the second case the result
is clear: the homology of a finite group G is always trivial at any prime which does not divide the order |G|.
In the first case, K(B, 1) is the homotopy colimit of the sequence

strogtlgl .,

so we have H, K(B,1) ~ lim H., S1 and the result follows by inspection. O

Remark 16. For a general space X, the unit map X — X need not induce an isomorphism on F,-
cohomology, so that X need not be an F,-localization of X.



