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Quaternionic Projective Space (Lecture 34)

The three-sphere S® can be identified with SU(2), and therefore has the structure of a topological group.
In this lecture, we will address the question of how canonical this structure is. In the category of topological
groups, the group structure on S is unique up to isomorphism. However, the purely homotopy-theoretic
situation is not quite so nice: there exist uncountably many pairwise inequivalent group structures on spaces
which are homotopy equivalent to S® (we will return to this point at the end of the lecture). However, the
situation is much simpler in p-adic homotopy theory, where p is a fixed prime. In this case, we again have
a unique group structure on (the p-adic completion) of the homotopy type of S®. We will sketch a proof of
this result when p is odd, following the ideas of Dwyer, Miller and Wilkerson.

We begin by formulating the problem more precisely. In homotopy theory, giving a group structure on a
homotopy type G is equivalent to realizing G as the loop space of a pointed space X. In this case, we have
a fiber sequence

G —*x— X.

If G = S3, then we can use the Serre spectral sequence to compute the (mod p) cohomology ring of X:
H*(X) ~ F,[t], where t lies in degree 4 (and transgresses to the fundamental class of G = S3). Moreover,
we have the same picture in the p-profinite category. We can now state the main result:

Theorem 1 (Dwyer, Miller, Wilkerson). Let X be a p-profinite space such that H*(X) ~ F,[t], where t lies
in degree 4. Then X is equivalent to the p-profinite completion BSU(2)Z of the classifying space of the group
SU(2) (in other words, infinite dimensional quaternionic projective space).

The first step is to describe the cohomology H*(X) as a representation of the mod-p Steenrod algebra A,,.
To simplify the exposition, we will consider only the case p # 2. We therefore begin with a few recollections
on the structure of A,:

e For any space X (or any p-profinite space), the algebra A, acts on the cohomology ring H*(X; F,).

e The algebra A, is generated the Bockstein operator 3 of degree 1, together with operations P’ of
degree 2i(p — 1), for i > 0.

e We have a Cartan formula

Pi(zy) =Y P"(x)P" (y),

n=n’+4n’’

and a similar formula for 3 (which involves a sign). Here we agree by convention that P° = id.
o If x € H*(X;F,), then P'(x) = xP and PJ(zx) = 0 for j > i (instability).
e We have P! P! = 2P? (this is a special case of the Adem relations, which we will not write out in full).

Lemma 2. Let X be as in the statement of Theorem 1. Then there exists an isomorphism o : H*(X) ~ F,[t]
such that the action of A, on H*(X) ~ F,[t] is determined by the Cartan formula, together with the relations

Ot=0



2#F ifi=1
Pit={ if i =2

0 otherwise.

Proof. The formula 3t = 0 is obvious, since H5(X ) =~ 0. The expressions Pt vanishes for i > 2 by instability,

and P%*t = t?. We have Pl(t) = ct™s for some constant ¢ € F,; the only nontrivial point is to compute c.
For this, we observe

27 = 2P2%(t)
= P'PY(t)
= cPlf;pTJrl
op+1
= cF—1tP
2
so that ¢? = % = 4. This has solutions ¢ = £2. However, if ¢ = —2 then we can adjust the isomorphism
a via the substitution ¢ — At, where A € F,, is not a quadratic residue, to obtain an isomorphism with the
desired property. O

Corollary 3. There exists an isomorphism o : H*(X) ~ H*(BSU(2)) of unstable A,-algebras.

We now make a few remarks about the structure of the group SU(2). We have injective group homo-
morphisms
Z/pZ — S' — SU(2).

These induce maps of classifying spaces
BZ/pZ — BS' — BSU(2),
hence we get maps on cohomology
H*(BZ/pZ) «— H*(BS') « H*(BSU(2)).

A simple computation shows that each of these maps is injective, and we can identify the above with the
sequence
Fylu, ] < Fplu] — Fyplt].

Here t — u?, where u has degree 2, and € has degree 1 in H*(BZ/pZ) (and therefore squares to zero).

Lemma 4. There exists a map 3 : BZ/pZ — X such that the diagram

H*(X)
L H*(BZ/pZ)
H*(BSU(2))

commutes.



Proof. We have
o Map(BZ/pZa X)

12

Hom(H* (X P%/7%), F,,)
Hom(T H*(X),F,)
Hom(H* (X), H* (BZ/pZ))

R

12

Here the Hom-sets on the right hand side are computed in the category of unstable Ap-algebras. In other
words, any map of A,-algebras from H*(X) to H*(BZ/pZ) is necessarily induced by a map of p-profinite
spaces BZ/pZ to X (which is then uniquely determined up to homotopy). O

Let Y be the connected component of the mapping space X B%/PZ containing the map 3. We then have
isomorphisms

HY(Y)

12

H*(XBZ/pZ) ®H0(XBZ/pZ) Fp
TH*(X) ®(TH*(X))0 Fp.

Consequently, the cohomology ring H*(Y") depends only on H*(X).

Let us temporarily assume that X = BSU (2); and that § is the map induced by the group homomor-

phism Z/pZ — SU(2). The loop space QY can be identified with the space of homotopies from § to itself,
which is a space of sections of a certain fibration

E — BZ/pZ

with fiver SU(2),/. This fibration corresponds to an action of Z/pZ on SU(2),, which is simply induced

by the action of Z/pZ by conjugation. We therefore may therefore identify QY with the homotopy fixed
set (SU (2)IV, )M2/PZ - Using the p-profinite Sullivan conjecture, this can be identified with the p-profinite

completion of the actual fixed set SU(2)%/PZ, which is simply the centralizer of Z/pZ in SU(2). A simple
calculation shows that this centralizer coincides with the circle group S* C SU(2). It follows that QY ~
(S'),. Using the Serre spectral sequence, we conclude that H*(Y) is isomorphic to Fy[u], where u lies in
degree 2. Moreover, the translation action of BZ/pZ on itself determines a map BZ/pZ — Y, which (after
scaling u if necessary) is given on cohomology by the canonical inclusion

Fylu] — Fylu, €.

We now return to the general case. Since H*(Y") depends only on H*(X), we conclude that H* ~ F[u]
in general. Evaluation at the base point of BZ/pZ induces a map e : Y — X. Moreover, the composition

BZ/pZ —Y 5 X
can be identified with the map 3. It follows that the above sequence induces, on cohomology, the maps
Fplu, €] < Fplu] < Fplt].
Consider the map from X B%/PZ to itself, given by composition with the map
Z/pZ = 7/pZ.

This map induces the identify on H*(BZ/pZ), and therefore induces the identity map on Hom(H*(X), H*(BZ/pZ)) ~
1o X BZ/PZ Tt therefore induces an involution on Y, which we will denote by i. We have a commutative
diagram

BZ/pZ —Y

Sl

BZ/pZ —=Y,



which gives a commutative diagram of cohomology groups

Fylu, ] <—— Fy[u]

N

Fplu, (] <——Fp[u]

Since the left vertical map carries v to —u, the right vertical map does as well. Let Yjz/27z denote the
homotopy coinvariants of the involution on Y. Then the canonical map Y — Y}z /27 induces an isomorphism

H* (Yiz)oz) ~ H*(YV)?/?% ~ B [u?).

The base point of BZ/pZ is invariant under the map given by multiplication by (—1), so the evaluation
map e : Y — X is invariant under the action of 7. Consequently, we obtain a factorization

Y\E/X

Yiz/22-

This induces a commutative diagram of cohomology groups

Fplu] Fylt]
\F ) /

We conclude that ¢’ induces an isomorphism on cohomology, and therefore a homotopy equivalence of p-
profinite spaces Y,z/2z — X.

We now identify the p-profinite space Y. Since the cohomology of Y lies entirely in even degrees, we can
choose a compatible family of cohomology classes u; € H*(Y;Z/p'Z) lifting u. These cohomology classes
determine a map of p-profinite spaces

Y — C‘@K(Z/pk,2>”,

which we can identify with a map ¥ — (BSl)X . This map induces an isomorphism on cohomology, and is
therefore an equivalence of p-profinite spaces. We may therefore identify Y with the (p-profinite) Eilenberg-
MacLane space K(Zy,2).

Now consider the involution ¢ on Y. We claim that the homotopy fixed set Y"%/2Z is nonempty: this
follows from the vanishing of the cohomology group H*(BZ/2Z;Z,) (since p is different from 2). We may
therefore assume without loss of generality that Y contains a point fixed by the involution . In this case, ¢
can be regarded as a pointed map from the Eilenberg-MacLane space K (Z,,2) to itself, which is given by a
group homomorphism h : Z, — Z,. Since h has order 2, we deduce that h is given by the formula h(z) = Az,
where A\ = +1. Since i carries u € H*(Y) to —u, we deduce that A = —1. We have therefore proven:

Theorem 5. Let X be as in Theorem 1 and p an odd prime. Then there is an equivalence of p-profinite
spaces
X ~ K(Zy,2)1z)22,

where the group Z/27Z acts on Z, by the sign involution.



In particular, there is only one possibility for the homotopy type of X. Theorem 1 follows.

Let us now consider the same problem in the non-p-profinite world. Let X be a simply connected space
such that H*(X;Z) ~ H*(BSU(2); Z) ~ Z[t], where t lies in degree 4 (this is equivalent to the assertion that
the loop space QX is homotopy equivalent to a three sphere S®, by the Serre spectral sequence). We have a
homotopy pullback diagram

~

X Hp Xp

|

Xq — ([, Xp)a-

Using Theorem 1 (and its analogue in the case p = 2), we deduce that for each prime p we have a homotopy

equivalence )?p ~ Bgl]\(2)p. A much easier argument shows that Xq ~ K(Q,4) ~ BSU(2)q. We can
therefore rewrite the above homotopy pullback diagram as

—

[I, BSU(2),

|

—

BSU(2)q —* (I1, BSU@),)q.

X

However, this does not imply that X ~ BSU(2), because the map ¢ has not been determined. The
domain of ¢ can be identified with an Eilenberg-MacLane space K(Q,4), and the codomain of ¢ with an
Eilenberg-MacLane space K ((Hp Z,)q,4), so that ¢ is determined up to homotopy by specifying an element
n € (11, Zp)q. Every invertible element 1 € ([],Z,)q gives rise to a space X which is a delooping of the
sphere S3. Not all of these choices are distinct (as an exercise, you can try to figure out when two choices
of i give homotopy equivalent deloopings), but this “mixing” construction nevertheless yields uncountably
many group structures on the homotopy type S 3,



