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Quaternionic Projective Space (Lecture 34)


The three-sphere S3 can be identified with SU(2), and therefore has the structure of a topological group. 
In this lecture, we will address the question of how canonical this structure is. In the category of topological 
groups, the group structure on S3 is unique up to isomorphism. However, the purely homotopy-theoretic 
situation is not quite so nice: there exist uncountably many pairwise inequivalent group structures on spaces 
which are homotopy equivalent to S3 (we will return to this point at the end of the lecture). However, the 
situation is much simpler in p-adic homotopy theory, where p is a fixed prime. In this case, we again have 
a unique group structure on (the p-adic completion) of the homotopy type of S3 . We will sketch a proof of 
this result when p is odd, following the ideas of Dwyer, Miller and Wilkerson. 

We begin by formulating the problem more precisely. In homotopy theory, giving a group structure on a 
homotopy type G is equivalent to realizing G as the loop space of a pointed space X. In this case, we have 
a fiber sequence 

G → ∗ → X. 

If G = S3, then we can use the Serre spectral sequence to compute the (mod p) cohomology ring of X: 
H∗(X) � Fp[t], where t lies in degree 4 (and transgresses to the fundamental class of G = S3). Moreover, 
we have the same picture in the p-profinite category. We can now state the main result: 

Theorem 1 (Dwyer, Miller, Wilkerson). Let X be a p-profinite space such that H∗(X) � Fp[t], where t lies 
in degree 4. Then X is equivalent to the p-profinite completion BSU(2)∨p of the classifying space of the group 
SU(2) (in other words, infinite dimensional quaternionic projective space). 

The first step is to describe the cohomology H∗(X) as a representation of the mod-p Steenrod algebra Ap. 
To simplify the exposition, we will consider only the case p = 2. We therefore begin with a few recollections �
on the structure of Ap: 

•	 For any space X (or any p-profinite space), the algebra Ap acts on the cohomology ring H∗(X; Fp). 

•	 The algebra Ap is generated the Bockstein operator β of degree 1, together with operations P i of 
degree 2i(p − 1), for i > 0. 

•	 We have a Cartan formula 
P n(xy) = 

� 
P n

� 
(x)P n

�� 
(y), 

n=n�+n�� 

and a similar formula for β (which involves a sign). Here we agree by convention that P 0 = id. 

If x ∈ H2i(X; Fp), then P i(x) = xp and P j (x) = 0 for j > i (instability). • 

•	 We have P 1P 1 = 2P 2 (this is a special case of the Adem relations, which we will not write out in full). 

Lemma 2. Let X be as in the statement of Theorem 1. Then there exists an isomorphism α : H∗(X) � Fp[t] 
such that the action of Ap on H∗(X) � Fp[t] is determined by the Cartan formula, together with the relations 

βt = 0 
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⎧ ⎪⎨ ⎪⎩ 

22t 
p+1	

if i = 1 

P it =	 tp if i = 2 

0 otherwise. 

Proof. The formula βt = 0 is obvious, since H5(X) � 0. The expressions P it vanishes for i > 2 by instability, 
and P 2t = tp. We have P 1(t) = ct 

p+1 
for some constant c ∈ Fp; the only nontrivial point is to compute c.2 

For this, we observe 

2tp = 2P 2(t) 
= P 1P 1(t) 

p+1 

= cP 1t 2 

2 p + 1 p= c t
2 

so that c2 = 4 = 4. This has solutions c = ±2. However, if c = −2 then we can adjust the isomorphism p+1 
α via the substitution t �→ λt, where λ ∈ Fp is not a quadratic residue, to obtain an isomorphism with the 
desired property. 

Corollary 3. There exists an isomorphism α : H∗(X) � H∗(BSU(2)) of unstable Ap-algebras. 

We now make a few remarks about the structure of the group SU(2). We have injective group homo­
morphisms 

Z/pZ � S1 � SU(2).→ → 

These induce maps of classifying spaces 

BZ/pZ BS1 BSU(2),→ → 

hence we get maps on cohomology 

H∗(BZ/pZ) H∗(BS1) H∗(BSU(2)).← ← 

A simple computation shows that each of these maps is injective, and we can identify the above with the 
sequence 

Fp[u, �] � Fp[u] � Fp[t].← ←

Here t �→ u2, where u has degree 2, and � has degree 1 in H∗(BZ/pZ) (and therefore squares to zero). 

Lemma 4. There exists a map β : BZ/pZ X such that the diagram→ 

H∗(X) 

α 

H∗(BZ/pZ) 

��������������

H∗(BSU(2)) 

commutes. 
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Proof. We have 

π0 Map(BZ/pZ, X) � Hom(H∗(XBZ/pZ), Fp) 
� Hom(T H∗(X), Fp) 
� Hom(H∗(X), H∗(BZ/pZ)) 

Here the Hom-sets on the right hand side are computed in the category of unstable Ap-algebras. In other 
words, any map of Ap-algebras from H∗(X) to H∗(BZ/pZ) is necessarily induced by a map of p-profinite 
spaces BZ/pZ to X (which is then uniquely determined up to homotopy). 

Let Y be the connected component of the mapping space XBZ/pZ containing the map β. We then have 
isomorphisms 

H∗(Y ) � H∗(XBZ/pZ) ⊗H0(XBZ/pZ) Fp 

� T H∗(X) ⊗(T H∗(X))0 Fp. 

Consequently, the cohomology ring H∗(Y ) depends only on H∗(X). 
Let us temporarily assume that X = BSU(2)∨p and that β is the map induced by the group homomor­

phism Z/pZ SU(2). The loop space ΩY can be identified with the space of homotopies from β to itself,→
which is a space of sections of a certain fibration 

E BZ/pZ→ 

with fiver SU(2)∨p . This fibration corresponds to an action of Z/pZ on SU(2)∨p , which is simply induced 
by the action of Z/pZ by conjugation. We therefore may therefore identify ΩY with the homotopy fixed 
set (SU(2)∨p )

hZ/pZ . Using the p-profinite Sullivan conjecture, this can be identified with the p-profinite 
completion of the actual fixed set SU(2)Z/pZ, which is simply the centralizer of Z/pZ in SU(2). A simple 
calculation shows that this centralizer coincides with the circle group S1 ⊆ SU(2). It follows that ΩY �
(S1)∨p . Using the Serre spectral sequence, we conclude that H∗(Y ) is isomorphic to Fp[u], where u lies in 
degree 2. Moreover, the translation action of BZ/pZ on itself determines a map BZ/pZ Y , which (after 
scaling u if necessary) is given on cohomology by the canonical inclusion 

→ 

Fp[u] � Fp[u, �].→ 

We now return to the general case. Since H∗(Y ) depends only on H∗(X), we conclude that H∗ � Fp[u] 
in general. Evaluation at the base point of BZ/pZ induces a map e : Y X. Moreover, the composition→ 

BZ/pZ Y 
e 

X→ → 

can be identified with the map β. It follows that the above sequence induces, on cohomology, the maps 

Fp[u, �] � Fp[u] � Fp[t].← ←

Consider the map from XBZ/pZ to itself, given by composition with the map 

Z/pZ 
−1 Z/pZ.→ 

This map induces the identify on H4(BZ/pZ), and therefore induces the identity map on Hom(H∗(X), H∗(BZ/pZ)) �
π0X

BZ/pZ . It therefore induces an involution on Y , which we will denote by i. We have a commutative 
diagram 

BZ/pZ �� Y 

i−1 

BZ/pZ �� Y, 
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which gives a commutative diagram of cohomology groups 

Fp[u, �] �� Fp[u] 

Fp[u, �] �� Fp[u] 

Since the left vertical map carries u to −u, the right vertical map does as well. Let YhZ/2Z denote the 
homotopy coinvariants of the involution on Y . Then the canonical map Y YhZ/2Z induces an isomorphism→ 

H∗(YhZ/2Z) � H∗(Y )Z/2Z � Fp[u 2]. 

The base point of BZ/pZ is invariant under the map given by multiplication by (−1), so the evaluation 
map e : Y X is invariant under the action of i. Consequently, we obtain a factorization→ 

Y 
e ��

�� X��������� ��
e
�
� 

��
��

�� 

YhZ/2Z. 

This induces a commutative diagram of cohomology groups 

Fp[u] �� Fp[t]��������� ��
��

��
��

� 

Fp[u2]. 

We conclude that e� induces an isomorphism on cohomology, and therefore a homotopy equivalence of p­
profinite spaces YhZ/2Z → X. 

We now identify the p-profinite space Y . Since the cohomology of Y lies entirely in even degrees, we can 
choose a compatible family of cohomology classes ui ∈ H2(Y ; Z/piZ) lifting u. These cohomology classes 
determine a map of p-profinite spaces 

Y “ lim K(Z/pk , 2)”,→ ←− 

which we can identify with a map Y (BS1)∨. This map induces an isomorphism on cohomology, and is→ p 
therefore an equivalence of p-profinite spaces. We may therefore identify Y with the (p-profinite) Eilenberg-
MacLane space K(Zp, 2). 

Now consider the involution i on Y . We claim that the homotopy fixed set Y hZ/2Z is nonempty: this 
follows from the vanishing of the cohomology group H3(BZ/2Z; Zp) (since p is different from 2). We may 
therefore assume without loss of generality that Y contains a point fixed by the involution i. In this case, i 
can be regarded as a pointed map from the Eilenberg-MacLane space K(Zp, 2) to itself, which is given by a 
group homomorphism h : Zp → Zp. Since h has order 2, we deduce that h is given by the formula h(z) = λz, 
where λ = ±1. Since i carries u ∈ H2(Y ) to −u, we deduce that λ = −1. We have therefore proven: 

Theorem 5. Let X be as in Theorem 1 and p an odd prime. Then there is an equivalence of p-profinite 
spaces 

X � K(Zp, 2)hZ/2Z, 

where the group Z/2Z acts on Zp by the sign involution. 
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In particular, there is only one possibility for the homotopy type of X. Theorem 1 follows. 
Let us now consider the same problem in the non-p-profinite world. Let X be a simply connected space 

such that H∗(X; Z) � H∗(BSU(2); Z) � Z[t], where t lies in degree 4 (this is equivalent to the assertion that 
the loop space ΩX is homotopy equivalent to a three sphere S3, by the Serre spectral sequence). We have a 
homotopy pullback diagram 

X ��
p X

�
p 

XQ �� ( p X
�

p)Q. 

Using Theorem 1 (and its analogue in the case p = 2), we deduce that for each prime p we have a homotopy 

equivalence Xp � BSU(2) . A much easier argument shows that XQ � K(Q, 4) � BSU(2)Q. We can p

therefore rewrite the above homotopy pullback diagram as 

X p BSU(2)p 

��
φ � 

��
BSU(2)Q ( p BSU(2)p)Q. 

However, this does not imply that X � BSU(2), because the map φ has not been determined. The 
domain of φ can be identified with an Eilenberg-MacLane space K(Q, 4), and the codomain of φ with an 
Eilenberg-MacLane space K(( p Zp)Q, 4), so that φ is determined up to homotopy by specifying an element 
η ∈ ( Zp)Q. Every invertible element η ∈ ( Zp)Q gives rise to a space X which is a delooping of the p p 

sphere S3 . Not all of these choices are distinct (as an exercise, you can try to figure out when two choices 
of η give homotopy equivalent deloopings), but this “mixing” construction nevertheless yields uncountably 
many group structures on the homotopy type S3 . 
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