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The Nil-Filtration (Lecture 36)


In the last lecture, we showed that the category U of unstable Steenrod modules fits into an adjunction 

fn 

U �� �� Funn, 
gn 

where fn is exact and gn is fully faithful. Our goal in this lecture is to put this result into a more general 
context. 

Definition 1. Let C be a Grothendieck abelian category. A Serre class in C is a full subcategory C0 ⊆ C 
such that: 

(1) Given a short exact sequence

0 X � X X �� 0
→ → → → 

in C, the object X belongs to C0 if and only if X � and X �� belong to C0. 

(2) The subcategory C0 is closed under small colimits in C (in virtue of (1), this is equivalent to being 
closed under direct sums). 

(3) The abelian category C0 is Grothendieck: in other words, there exists a set of objects of C0 which 
generates C0 under colimits. 

We say that a morphism f : X Y in C is a C0-equivalence if the kernel and cokernel of f belong to C0.→ 

In what follows, we fix a Grothendieck abelian category C and a Serre subcategory C0. 

Lemma 2. Let X be an object of C. The following conditions are equivalent: 

(1) For every C0-equivalence Y Y �, the induced map HomC(Y �, X) HomC(Y,X) is a bijection.→ → 

(2) For every object Z ∈ C0, we have HomC(Z,X) = ExtC(Z,X) = 0. 

Proof. Suppose first that (1) is satisfied. If Z ∈ C0, then the map 0 → Z is a C0-equivalence, so we get 
HomC(Z,X) � HomC(0, X) � 0. To prove that ExtC(Z,X) vanishes, we consider an arbitrary extension 

0 X 
f 

Y Z 0→ → → → 

and show that it is split. The map f is a C0-equivalence, so composition with f induces a bijection 
HomC(Y, X) HomC(X, X). In particular, the identity map from X to itself factors through f , so the→
above exact sequence splits. 

Now suppose that (2) is satisfied, and let g : Y Y � be a C0-equivalence. Then g factors as a composition→ 

Y 
g� 

Im(g) 
g�� 

Y �,→ → 
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where g� is an epimorphism and g�� is a monomorphism. We may therefore assume that g is either epic or 
monic. In the epic case, we have a short exact sequence 

0 ker(g) Y Y � 0→ → → → 

which yields an exact sequence 

0 HomC(Y �, Z) HomC(Y,Z) HomC(ker(g), Z) = 0.→ → → 

In the monic case, we have a short exact sequence 

0 Y Y � coker(g) 0→ → → → 

which gives rise to an exact sequence 

0 � HomC(coker(g), Z) → HomC(Y �, Z) → HomC(Y, Z) → ExtC(coker(g), Z) � 0. 

Definition 3. We will say that an object X ∈ C is C0-local if the equivalent conditions of Lemma 2 are 
satisfied. We let C / C0 denote the full subcategory of C consisting of C0-local objects. 

Example 4. Let C be the category of abelian groups, and C0 the full subcategory consisting of abelian 
groups M such that every element m ∈ M satisfies pkm = 0 for k � 0. Then C0 is a Serre class in C. An 
abelian group is C0-local if and only if it is a module over the ring Z[ 1 

p ]. 

Example 5. Let U be the category of unstable modules over the Steenrod algebra A, and let Nil ⊆ U denote 
the subcategory of nilpotent modules. Then Nil is a Serre class in U. 

Remark 6. It is clear from characterization (1) of Lemma 2 that the collection of C0-local objects of C is 
stable under arbitrary limits. 

Proposition 7. Let C be a Grothendieck abelian category and C0 ⊆ C a Serre class. Then: 

(1) The inclusion C / C0 ⊆ C admits a left adjoint L. 

(2) The category C / C0 is a Grothendieck abelian category. 

(3) The functor L is exact. 

Warning 8. The inclusion C / C0 ⊆ C is not an exact functor in general. The formation of cokernels in 
C / C0 is given by first forming cokernels in C, and then applying the functor L. 

Proof. Using the small object argument, one can show that every object X ∈ C admits a C0-equivalence 
X LX, where LX is C0-local. One can then show that LX depends functorially on X and yields the →
desired adjoint. 

We will prove (2). First, we show that A = C / C0 is an abelian category. It is easy to see that A is 
additive and admits kernels and cokernels. To avoid confusion, if f : X Y is a morphism in A, we let →
cokerA(f) denote the cokernel of f in the category A, and cokerC(f) its cokernel in the category C, so that 
we have an identification cokerA(f) � L cokerC(f). (There is no need to introduce any complicated notation 
for kernels, since these can be computed either in A or in C.) To prove that A is an abelian category, we 
must show that if f : X Y is a morphism in A, then the canonical map → 

cokerA(ker(f) X) ker(Y cokerA(f))→ → → 

is an isomorphism. In other words, we must show that the map 

L cokerC(ker(f) X) ker(Y L cokerC(f))→ → → 
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is an equivalence. This is equivalent to showing that the map 

φ : cokerC(ker(f) X) ker(Y L cokerC(f))→ → → 

is a C0-equivalence. Since C is an abelian category, we can identify the left hand side with ker(Y cokerC(f)). 
We have a short exact sequence 

→ 

0 ker(Y cokerC(f)) 
φ 

ker(Y L cokerC(f)) ker(cokerC(f) L cokerC(f).→ → → → → → 

The desired result now follows, since coker(φ) is a subobject of an object of C0, and therefore belongs to C0. 
Assuming (3) for the moment, we now show that A is a Grothendieck abelian category. The existence 

of colimits and a set of generators follows from general categorical nonsense. It therefore suffices to show 
that filtered colimits are exact. In other words, we must show that if {fαXα → Yα} is a filtered diagram of 
monomorphisms in A, then the colimit lim−→A

{fα} is a monomorphism. We have 

lim {fα} � L lim{fα},−→ −→
A C 

so the desired result follows from the exactness of L and the assumption that C is Grothendieck. 
We now prove (3). Since L is a left adjoint, it is automatically right exact. It will therefore suffice to 

prove that L preserves monomorphisms. Let f : X Y be a monomorphism in C; we wish to prove that 
Lf : LX → LY is again a monomorphism. Let K = 

→
ker(Lf), and let K � = K ×LX X ⊆ X. Since f is a 

monomorphism, f induces a monomorphism 

K � → ker(α) ⊆ Y, 

where α : Y → LY is the canonical map. Since α is a C0-equivalence, we deduce that K � ∈ C0. We have an 
exact sequence 

K � K coker(X LX),→ → → 

so that K ∈ C0 as well. But then the inclusion K ⊆ LX must be the zero map, so that K � 0 as desired. 

The next result shows that C / C0 can really be viewed as a “quotient” of C by C0: 

Proposition 9. Let D be a Grothendieck abelian category, and F : C D a colimit-preserving functor. →
Then: 

(1) The functor F is isomorphic to a composition 

L F �
C C / C0 D→ → 

if and only if F carries C0-equivalences to isomorphisms in D. Moreover, in this case, F � is determined 
up to unique isomorphism (and is colimit preserving). 

(2) The functor F � is exact if and only if F is exact. 

Proof. Note that F � = F C / C0 is, up to isomorphism, the only functor satisfying the condition of (1); the 
condition that F � F ◦ L

| 
is equivalent to the requirement that F carries C0-equivalences to isomorphisms. 

This proves (1). We now prove (2). The “only if” direction is clear, since L is exact. Conversely, suppose 
that F is exact. Since F � preserves colimits, it is automatically right exact; it therefore suffices to show that 
F � preserves monomorphisms. This follows from the exactness of F , since F � � F C / C0 and a morphism 
f : X � → X is a monomorphism in C if and only if it is a monomorphism in C / C0. 

|
This proves (2). 

Remark 10. Note that, if F is exact, then F carries C0-equivalences to isomorphisms if and only if F 
annihilates every object of C0. 
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Corollary 11. Let F : C D be an exact, colimit preserving functor between Grothendieck abelian cate­
gories. Then: 

→ 

(1)	 Let C0 ⊆ C be the full subcategory consisting of objects X ∈ C such that FX � 0. Then C0 is a Serre 
class in C. 

(2)	 The functor F factors as a composition C C / C0 
F � 

D, where F � is an exact colimit preserving → →
functor. 

(3)	 The functor F admits a right adjoint G. 

(4)	 The functor F � is an equivalence if and only if G is fully faithful. 

Proof. Assertion (1) follows immediately from the definitions, and (2) follows from Proposition 9. Assertion 
(3) follows from the adjoint functor theorem. The “only if” direction of (4) is clear, since the localization 
functor L : C → C / C0 is left adjoint to the fully faithful inclusion C / C0 ⊆ C. For the converse, let us suppose 
that G is fully faithful. Replacing C by C / C0 if necessary, we may reduce to the case C0 = 0. We wish to 
show that F is an equivalence of categories. Since G is fully faithful, the counit map βD : FG(D) D is→
an isomorphism for any D ∈ D. We want to show that the unit map α : C → GF (C) is an isomorphism for 
each C ∈ C. The map F (α) is a right inverse to the invertible morphism βFC : FG(F (C)) → F (C), so F (α) 
is an isomorphism. It follows that ker(α) and coker(α) are annihilated by F , so ker(α) � coker(α) � 0 and 
α is an isomorphism as desired. 

We now return to our main example: 

Corollary 12. Let fn : U Funn be the functor defined in the last lecture, so that fn(M)(V ) = τ ≤nTV M .→
Then fn induces an equivalence of categories U / Kn � Funn, where Kn denotes the Serre class consisting of 
all unstable A-modules M such that τ ≤nTV M vanishes for every finite dimensional F2-vector space V . 

The following more precise description of Kn is available: 

Theorem 13. For each n ≥ 0, the Serre class Kn ⊆ U is the smallest Serre class containing Σn+1M , for 
every M ∈ U. 

Proof. Since TV commutes with suspension, we have 

τ≤nTV Σn+1M � τ≤nΣn+1TV M � 0 

for every M ∈ U. This proves that Σn+1M is contained in Kn. The reverse inclusion is a nontrivial result 
which we will discuss in the next lecture. 

Example 14. The Serre classes Nil, K0 ⊆ U coincide. The containment K0 ⊆ Nil is clear, since every 
suspension ΣM is nilpotent (in fact, the Frobenius map ΦM M is identically zero). Conversely, suppose →
that M is nilpotent. For each k ≥ 0, let M(k) denote the submodule of M consisting of elements x such 
that 

Sq2k deg(x) . . . Sq2 deg(x) Sqdeg x x = 0. � 
Then M = M(k), so it will suffice to show that each M(k) ∈ K0. The proof then proceeds by induction k 
on k. Since K0 is closed under extensions, it suffices to show that each N = M(k)/M (k − 1) belongs to K0. 
But the Frobenius map ΦN N is zero by construction, so the exact sequence → 

ΦN N ΣΩN 0→ → → 

proves that N is a suspension and therefore belongs to K0. 
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