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The Krull Filtration (Lecture 37)

Let A be a commutative Noetherian ring. Recall that the Zariski spectrum Spec A is defined to be the
set of all prime ideals {p C A}. Let Mod 4 denote the category of A-modules. It is possible to recover Spec A
directly from the category Mod 4. For this, we need to recall a few definitions and facts:

Definition 1. Let € be a Grothendieck abelian category. An object X € C is Noetherian if every ascending
chain of subobjects of X eventually stabilizes. We say that € is locally Noetherian if every object of C is the
direct limit of its Noetherian subobjects.

An object I € @ is injective if the functor M — Home (M, I) is exact. We say that an injective object I
is indecomposable if, whenever I is written as a direct sum I ~ I' & I either I’ or I" is zero.

Let X € C be an object. An injective hull of X is a monomorphism X — I such that I is injective, and
every nonzero subobject I’ C I satisfies I’ x; X # 0.

Proposition 2. Let C be a locally Noetherian abelian category. Then:

(1) Every object M € C admits an injective hull M — I. Moreover, I is uniquely determined up to
(noncanonical) isomorphism. If M is simple, then I is indecomposable.

(2) Ewvery direct sum $o 1, of injective objects is injective.

(3) Ewery injective object I € C can be obtained as a direct sum ®q1,, where each summand I, is an
indecomposable injective.

This motivates the following definition:

Definition 3. Let € be a locally Noetherian abelian category. Then we let Spec € denote the collection of
all isomorphism classes of indecomposable injective objects of C.

Remark 4. A priori, the collection Spec € might be very large, since € has a proper class of injective objects.
However, if I is an indecomposable injective object of C, then I can be regarded as the injective hull of any
nonzero submodule Iy C I. In particular, I can be regarded as the injective hull of a Noetherian object of
C. It follows that SpecC is actually a set.

Example 5. Let A be a Noetherian ring. Then there is a canonical bijection
Spec A — Spec Mod 4

which carries a prime ideal p C A to the injective hull of the A-module A/p.
For example, if A = Z, then the indecomposable injective objects of Mod, are precisely the abelian
groups Q and Z[]%] /Z, where p is a prime number.

Example 6. Let U denote the category of unstable Steenrod modules. The simple objects of U are precisely
the modules ¥*F5, where k& > 0. The injective hull of *F5 can be identified with the Brown-Gitler module
J(k).



If A is a Noetherian ring, then Spec A has a good deal more structure than just that of a set. For
example, we can (at least in good cases) assign a Krull dimension to every point of Spec A. The points of
Krull dimension zero correspond to the maximal ideals of A. Note that the collection of maximal ideals of
A can be described very simply in terms of Mod4: they are isomorphism classes of simple objects of Mod 4
(more precisely, an A-module M is simple if and only if it is isomorphic to a quotient A/m, where m is a
maximal ideal of A). Therefore, the corresponding points of Spec Mod 4 are precisely the injective hulls of
the simple objects of A. We now wish to generalize this picture to more general categories.

Definition 7. Let € be a locally Noetherian abelian category. Then Krullo((?) is the smallest Serre class in
C which contains every simple object in C.

Remark 8. If € # 0, then Krull’(€) # 0. In other words, € contains a simple object. To prove this, choose
a nonzero object M € C. Since C is locally Noetherian, M is the union of its Noetherian subobjects. We
may therefore assume that M is Noetherian. Let Mj be a maximal proper submodule of M. Then M/M,
is a simple object of C.

Proposition 9. Let C be a locally Noetherian abelian category, and let I be an injective object of €. Then
ezxactly one of the following statements holds:

(1) The object I is the injective hull of a simple object C' € C (which is then determined up to isomorphism,).
(2) The object I belongs to € /Krull’(C) (and is injective as an object of € / Krull’(@)).

Proof. Let Cyp = {C € € : Home(C, I) = 0}. Since I is injective, Cy is a Serre class in C.

By definition, I belongs to € / Krull?(€) if and only if, for every object C' € Krull’(€), we have Home (C, I) =
Exte(C,I) = 0. The second equality is automatic, since I is injective, and the first is equivalent to the as-
sertion that C' € €. In other words, I € € / Krull’(€) if and only if Krull®(€) C €y. Consequently, (2) holds
if and only if Home(C, I) = 0 for every simple object C' € C.

Suppose that (2) does not hold, and choose a nonzero map f : C — I where C' is simple. Then f must be
a monomorphism. Choose an injective hull C C I’. Since I is injective, we can extend f to amap f: I’ — I.
Since ker(f) N C ~ ker(f) ~ 0, we deduce that f is injective. Since I’ is injective, the injective map f splits
and we get an isomorphism I ~ I’ @ I"”. Since I is indecomposable, I’ ~ 0 so that f is an isomorphism.
This proves (1), except for the uniqueness of C. To establish the uniqueness, we note that given injective
maps

C—1+<D,

the intersection C' x; D can be regarded as a nonzero submodule of both C' and D. If C' and D are simple,
this gives isomorphisms
C—Cx;D< D.

This motivates the following definition:

Definition 10. Let € be a Grothendieck abelian category. For each n > 0, we let Krull”(€) denote the
inverse image of Krull”(€ / Krull”~!(€)) under the localization functor

L:C— C/Krull" ().

We will say that an indecomposable injective I € SpecC has Krull dimension > n if I belongs to
C/Krull" €.

We have a filtration of C by Serre classes
Krull’(€) C Krull'(C) C Krull*(€) C ...

By construction, each of the successive quotients Krull™(€)/Krull"(€) is generated by simple objects.



Remark 11. If A is a well-behaved commutative ring (such as a finitely generated algebra over a field),
then the Krull filtration above is finite: we have Krull”(Mod4) = Mod 4 as soon as n > dim(A). In general,
the filtration need not terminate nor exhaust € (to obtain the whole of €, one needs to define an analogous
filtration indexed by the ordinals).

We wish to study the Krull filtration on the abelian category U of unstable A-modules. We begin by
determining Krull’(A).

Definition 12. An unstable A-module M is locally finite if, for each x € M, the cyclic submodule Ax C M
has finite dimension over Fs.

Proposition 13. An unstable A-module M belongs to Krull’(W) if and only if M is locally finite.

Proof. We first observe that the collection of locally finite A-modules forms a Serre class in U. Consequently,
to prove the “only if” direction it will suffice to show that every simple A-module is locally finite. This follows
from the characterization of simple objects given in Remark 77.

For the converse, let us suppose that M is locally finite. We wish to prove that M € Krull® (U). Write M
as the union of its finitely generated submodules M,,. Since KrullO(U) is a Serre class, it will suffice to show
that each M, belongs to KrullO(U). Since M is locally finite, each M, is finite dimensional over F,. We
may therefore assume that M has finite dimension over Fo. We now work by induction on the dimension of
M. Let x be a nonzero element of M of maximal degree k. Then x determines an exact sequence

0—>ZkF2—>M—>M/—>O.

By construction, we have X*F, € Krull®(U), and M’ € Krull’(U) by the inductive hypothesis. It follows
that M € Krull®(W), as desired. O

We now wish to give another characterization of Krullo(u)7 this time using Lannes’ T-functor. We first
observe that H*(BF3) canonically decomposes as a direct sum Fy @ H;4(BF3). Consequently, we get a
canonical isomorphism of functors

(o & H'(BF2)) ~ o & (s © Hiyy (BF2)).
Passing to adjoints, we get a decomposition of functors
T ~id@T

from the category U to itself. Moreover, formal properties of 7" are inherited by T: for example, since T is
exact and commutes with suspension and ®, we deduce that T is exact and commutes with suspension and
.

Proposition 14. Let M be an unstable A-module. Then M € KrullO(U) if and only if TM = 0.

Proof. The “only if” direction is easy: let € = {M € U: TM = 0}. Then € is a Serre class in U. To show
that KrullO(U) C @, it suffices to show that every simple object £¥F5 belongs to €. Since T commutes with
suspensions, it suffices to show that TF5 vanishes. This is equivalent to the assertion that TFy ~ F5, which
was established in an earlier lecture.

The converse is much more difficult to prove. It relies on the following classification of the injective
objects of U:

Theorem 15. Every indecomposable injective object of W appears as a summand of J(m) @ (H},,(BF2))®"

red
for some integers m and n.

Let us assume Theorem 15 and complete the proof. Let M € U be such that TM = 0. We wish to show
that M € Krull’(U). Equivalently, we wish to show that the localization functor L : U — U / Krull®(U) anni-
hilates M. If not, there exists a nonzero map n € Hom(LM, I) ~ Hom(M, I), where I is an indecomposable



injective of U /Krull’(U). According to Proposition 9, we can identify I with an indecomposable injective
of U which is not the injective hull of a simple object (in other words, I is not isomorphic to a Brown-Gitler
module J(m)). Invoking Theorem 15, we get a nonzero map

M — J(m) @ H 4(BFy)®™
for some n > 0. This is adjoint to a nonzero map T'M — J(m), so that TM # 0. O
We now extend the previous result to describe each step of the Krull filtration.

Proposition 16. Let M be an unstable A-module. Then M € Krull"(U) if and only ianHM ~ 0.

Proof. The proof goes by induction on n, the case n = 0 being Proposition 14. Suppose first that T~ 0.
We wish to prove that M € Krull”(U). Writing M as the union of its finitely generated submodules, we may
reduce to the case where M is finitely generated. Let L : U — U /Krull” *(U) be the localization functor.
We wish to show that LM belongs to Krull®(U / Krull®~'(U)). For this, we will show that LM has finite
length in U / Krull” ™ U.

By the inductive hypothesis, the functor T factors as a composition

UL/ Kea™ ' u S

Consequently, for any subobject N C LM, we can identify F'N with a subobject of T"M. Note that T" M
is locally finite (by Proposition 14) and finitely generated (since T preserves finitely generated objects), and
therefore finite dimensional. Thus there are only finitely many possibilities for the subobject F'N C T"M.
But if FN = FN’ C T"'M, then the inclusions

N— NNON < N’

induce isomorphisms
FN «— F(NNN')— FN'.

Using the inductive hypothesis, we deduce that N = N N N’ = N’. Thus, there are only finitely many

subobjects of LM € U/ Krull” U, so that LM has finite length.

We now prove the reverse inclusion: Krull”(U) C {M : T M ~ 0}. As before, the right side is a Serre

. . Fntl . . . _
class, to it will suffice to show that 7" M = 0 whenever LM is a simple object of U /Krull™™!(U). We
have a sequence of surjective maps

M — SQM — S*Q°M — ...
whose colimit is zero. Since LM is simple, we conclude that there exists an integer k such that the map
LM — LYFQF M
is an isomorphism and LX*T1QF 1M1 = 0. We then have isomorphisms
T'M — T"s*0F M ~ SFT Q%M.

Moreover, the inductive hypothesis implies that 3 and 2 induce adjoint functors on the localized category
W/ Krull® ™ (W); it is not difficult to deduce from this that LQ* M is again simple. We may therefore replace
M by QFM, and thereby assume that LYQM ~ 0.
Consider the exact sequence
dM — M — QM — 0.

This gives rise to an exact sequence of localizations

LOM % LM—LYQM — 0



in the category U /Krull”™'(U). Since LM is simple and the last term vanishes, we conclude that a is an
epimorphism.

Applying the functor F', we get an epimorphism T'"®M — T"M. Let N =T M. Since ® commutes
with T, we deduce that the canonical map ®N — N is surjective. It then follows by induction on m that
N™ ~ 0 for m > 0. In other words, IV is concentrated in degree zero, and is a direct sum of copies of Fy. It

follows that 0 ~ TN ~ T”HM, as desired. O



