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The Adem Relations (Lecture 4)


Remark 1. Throughout this lecture, we will work over the field F2 with two elements. If X is a topological 
space, we will simply write H (X) and H∗(X) to denote the homology and cohomology of X with coefficients∗
in F2. Similarly, we let C (X) and C∗(X) denote the chain and cochain complexes of X, respectively.∗

Our goal in this lecture is to prove the Adem relations. We begin by describing our context. For any 
chain complex V , we have defined the nth extended power Dn(V ) = Vh

⊗
Σ
n 
n 
. We now observe that there is a 

canonical map 
φ : Dm(Dn(V )) Dmn(V ).→ 

More concretely, the left hand side is given by 

(V ⊗n )⊗m � V ⊗mn 
hΣn hΣm hG , 

where G denotes the wreath product Σm � Σm. The right hand side is simply given by V ⊗mn . The map φn hΣmn 

is induced by the inclusion of finite groups G � Σmn.→ 

Definition 2. Let V be a complex equipped with a symmetric multiplication m : D2(V ) V . We will say 
that m is good if there exists a map m� : D4(V ) → V such that the diagram 

→ 

D2(D2(V ))
D2 (m) �� D2(V ) 

φ m 

��
D4(V ) m� ��

�� V. 

Example 3. Let V be an E -algebra over the field F2. Then the symmetric multiplication on V is good. In∞
particular, if X is a topological space then the cochain complex C∗(X) has a good symmetric multiplication. 

Notation 4. Let i and j be integers. We let �� � � � 

(i, j) = 
i+

i
j = i+

j
j = (ii

+
!j
j
!
)! if i, j ≥ 0 

. 
0 otherwise. 

We will regard (i, j) as taking values in the finite field F2. We observe that if i, j ≥ 0, then (i, j) is equal to 
1 if the sum of i and j in base 2 can be computed “without carrying”, and equal to zero otherwise. 

Our goal in this lecture is to prove the following: 

Proposition 5 (Adem Relations). Let V be a complex equipped with a good symmetric multiplication, and 
let v ∈ Hn(V ). For any pair of integers a < 2b, we have 

Sqa Sqb(v) = (2k − a, b − k − 1) Sqb+k Sqa−k(v). 
k 
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Actually, we will not give a complete proof in this lecture. We will instead show how to reduce the 
statement of Proposition 5 from a calculation in the homology of groups (Lemma ??). This calculation will 
be carried out in the next lecture. 

Remark 6. The sum appearing in Proposition 5 is actually finite, since (2k − a, b − k − 1) vanishes unless 
a ≤ 2k < 2b. 

Definition 7. Let F2{. . . , Sq−1 , Sq0 , Sq1 , . . .} denote the free associative F2-algebra generated by the sym­
bols {Sqi}i∈Z. The big Steenrod algebra ABig is defined to be the quotient of F2{. . . , Sq−1 , Sq0 , Sq1 , . . .} by 
imposing the Adem relations 

Sqa Sqb = (2k − a, b − k − 1) Sqb+k Sqa−k . 
k 

for every a < 2b. 
We observe that ABig the structure of a graded algebra, where each generator Sqi is given degree i. A 

module over the big Steenrod algebra ABig is a graded vector space V over the field F2, equipped with an 
action ABig ⊗V → V which respects the grading: if v ∈ V is homogeneous of degree n, then Sqk(v) is 
homogeneous of degree n + k. We will say that V is unstable if, whenever Sqk(v) vanishes whenever v is 
homogeneous of degree < k. 

Example 8. Let V be a complex equipped with a good symmetric multiplication. Then Proposition 5 
implies that the cohomology H∗(V ) has the structure of a unstable ABig-module. 

Definition 9. The Steenrod algebra A is defined to be the quotient of ABig by the (two-sided) ideal generated 
by the element 1 − Sq0 . We will say that a (graded) A-module is unstable if it is unstable when regarded as 
an ABig-module. 

Example 10. Let X be a topological space. Since Sq0 acts by the identity on the cohomology H∗(X), we 
conclude that H∗(X) has the structure of an unstable module over the Steenrod algebra. 

Remark 11. In the last lecture, we saw another feature of the action of Steenrod operations on the co­
homology of spaces: the operations Sq−a vanish for a > 0. In fact, this is a formal consequence of Adem 
relations and the fact that Sq0 acts by the identity. In other words, for a > 0 the element Sq−a is equal to 
zero in the Steenrod algebra A. We will prove this by induction on a. For this, we invoke the Adem relations 
to deduce � 

Sq−a = Sq−a Sq0 = (2k + a, −k − 1) Sqk Sq−a−k . 
k 

a aIf k ≥ 0 or − < k, then the coefficient (2k + a, −k − 1) vanishes. But if − ≤ k < 0, then Sq−a−k is equal 2 2 
to zero in A by the inductive hypothesis. 

We now turn to the proof of Proposition 5. We begin with the following observation: 

Remark 12. Recall that if V is a complex equipped with a symmetric multiplication, then ΩV inherits a 
symmetric multiplication, and the isomorphism 

H∗(V ) � H∗+1(ΩV ) 

is compatible with the action of the Steenrod operations. The same argument shows that if V has a good 
symmetric multiplication, then the induced symmetric multiplication is also good. Consequently, in proving 
Proposition 5 we are free to replace V by any shift Ωn� 

(V ). In other words, we are free to enlarge the degree 
n of the cohomology class v. 

The formula of Proposition 5 looks very assymetric: the left hand side has only one term, while the 
right hand side has many terms. We will deduce Proposition 5 from the following more symmetric looking 
assertion: 

2 



� 

� 

Lemma 13. Let p and q be positive integers, let V be a complex with a good symmetric multiplication, and 
let v ∈ Hn(V ). Then we have an equality � 

(p − 2l, l) Sq2n−q−l Sqn−p+l(v) = 
� 

(q − 2l�, l�) Sq2n−p−l� 

Sqn−q−l� 

(v) 
l l� 

in H4n−p−q(V ). 

Assuming Lemma 13, we can now prove Proposition 5. 

Proof. Choose an integer m � 0. According to Remark 12, we are free to enlarge n as much as we like; in 
particular, we can choose n = 2m − 1 + b. We will now apply Lemma 13 with p = 2m − 1 and q = 2n − a. 
Let us now evaluate both sides of the expression appearing in Lemma 13. The left hand side is given by 

(2m − 1 − 2l, l) Sqa−l Sqb+l(v). 
l 

The coefficient (2m − 1 − 2l, l) obviously vanishes if l < 0, or if l ≥ 2m−1 . If 0 < l < 2m−1, then we can 
write l = 2x + 2x+1y, where 0 ≤ x ≤ m − 2. We now observe that 2x appears in the base 2 expansion of 
both 2m − 1 − 2l and l, so the coefficient (2m − 1 − 2l, l) vanishes. It follows that the left hand side consists 
of only one nonzero term, given by the expression Sqa Sqb(v). 

We now evaluate the right hand side. Let k = 2m + b − l� − 1, so that the left hand sum can be written as 

(2k − a, 2m + b − k − 1) Sqb+k Sqa−k(v). 
k 

To complete the proof, it will suffice to show that for every integer k, either 

(2k − a, 2m + b − k − 1) = (2k − a, b − k − 1) 

or Sqb+k Sqa−k(v) vanishes. We consider four cases: 

(i) 2k < a: In this case, we have 

(2k − a, 2m + b − k − 1) = (2k − a, b − k − 1) = 0. 

(ii) a ≤ 2k < 2b: In this case, 2k − a < 2b − a ≤ 2m . It follows that (2k − a, z) = (2k − a, z + 2m) for every 
nonnegative integer x (see Notation 4). 

(iii) 2b ≤ 2k < a + 2m: The expression (2k − a, b − k − 1) vanishes in this case. Moreover, we have 
2k − a ≥ 2b − a > 0, so we can choose a nonnegative integer y such that 2y ≤ 2k − a ≤ 2y+1 − 1. Our 
assumption implies that y < m. Since 2k ≤ 2y+1 + a − 1 ≤ 2y+1 +2b − 2, we deduce that k − b +1 ≤ 2y. 
We now observe that 2y appears in the base 2 expansion of both 2k − a and 2m − (k − b + 1), so the 
expression (2k − a, 2m + b − k − 1) vanishes. 

(iv) a + 2m ≤ 2k: In this case, we have 

deg(Sqa−k(v)) = (a − k) + n = (a − k) + (2m + b − 1). 

Since a +2m ≤ 2k, we get deg(Sqa−k(v)) ≤ k + b − 1 < k + b. Thus Sqk+b Sqa−k(v) vanishes for reasons 
of degree. 

We now turn to the proof of Lemma 13. As usual, the equation among Steenrod operations on a complex 
V with a symmetric multiplication is an immediate consequence of the following more universal relation, 
which holds for any complex V : 
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Lemma 14. Let V be a complex, let p and q be positive integers, and let v ∈ Hn(V ). Then the sums 

(p − 2l, l) Sq
2n−q−l 

Sq
n−p+l

(v) ∈ H4n−p−q(D2(D2(V )) 
l 

(q − 2l�, l�) Sq
2n−p−l� 

Sq
n−p+l� 

(v) ∈ H4n−p−q (D2(D2(V ))) 
l� 

have the same image in H4n−p−q(D4(V )) under the map φ : D2(D2(V )) D4(V ).→ 

To prove Lemma 14, we may assume that V � F2[−n] is generated by the cohomology class v. In this 
case, D4(V ) � V ⊗4 can be identified with a (4n)-fold shift of the chain complex C (BΣ4). Similarly, hΣ4 ∗

D2(D2(V )) � D2(C (BΣ2)[−2n]) � D2(C (BΣ2))[−4n]∗ ∗

can be identified with a shift of the chain complex C (BG), where G is the semidirect product Σ2 × Σ2 �∗
Σ2, which we can identify with a 2-Sylow subgroup of Σ4. Let us use our usual basis {xi}i≤0 for the 
homology H (BΣ2). As we saw in the second lecture, this determines a basis for H (BG) � H−∗ D2(C (BΣ2),∗ ∗ ∗

consisting of pairwise products {xixj }i<j and Steenrod operations {Sq
k 
xi}k≤−i. We have an isomorphism 

H (BG) � H4n−∗(D2(D2(V ))),∗

which carries Sq
k 
xi to Sq

2n+k 
Sq

n−i
(v). Consequently, Lemma 14 is an immediate consequence of the 

following assertion: 

Lemma 15. Let p and q be positive integers. Then the expressions 

(p − 2l, l) Sq
−q−l 

xp−l ∈ Hp+q(BG) 
l 

(q − 2l�, l�) Sq
−p−l� 

xq−l� ∈ Hp+q(BG) 
l 

have the same image in Hp+q(BΣ4). 

We will prove Lemma 15 in the next lecture. 
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