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The Adem Relations (Lecture 4)

Remark 1. Throughout this lecture, we will work over the field F5 with two elements. If X is a topological
space, we will simply write H,(X) and H*(X) to denote the homology and cohomology of X with coefficients
in Fy. Similarly, we let C,.(X) and C*(X) denote the chain and cochain complexes of X, respectively.

Our goal in this lecture is to prove the Adem relations. We begin by describing our context. For any
chain complex V', we have defined the nth extended power D, (V) = Vh%i‘l. We now observe that there is a
canonical map

¢ : Dy (Dp(V)) = Dypn (V).

More concretely, the left hand side is given by

(Vh%i)%nm ~ Ve,
where G denotes the wreath product X x X,,. The right hand side is simply given by V,%:’nz. The map ¢
is induced by the inclusion of finite groups G — ¥,,,.

Definition 2. Let V be a complex equipped with a symmetric multiplication m : Do (V) — V. We will say
that m is good if there exists a map m’ : Dy(V) — V such that the diagram

Dy(Do(V)) 2 Dy (V)

ol

Dy(V) V.

Example 3. Let V be an F-algebra over the field Fo. Then the symmetric multiplication on V' is good. In
particular, if X is a topological space then the cochain complex C*(X) has a good symmetric multiplication.

Notation 4. Let ¢ and j be integers. We let

(7) = () = =0

i,7) = .
(i) {O otherwise.

We will regard (i, j) as taking values in the finite field Fo. We observe that if ¢, > 0, then (4, ) is equal to
1 if the sum of 7 and j in base 2 can be computed “without carrying”, and equal to zero otherwise.

Our goal in this lecture is to prove the following:

Proposition 5 (Adem Relations). Let V' be a complex equipped with a good symmetric multiplication, and
let ve H"(V). For any pair of integers a < 2b, we have

Sq* S’ (v) = Z(2k —a,b—k—1)Sq"™*Sq**(v).
k



Actually, we will not give a complete proof in this lecture. We will instead show how to reduce the
statement of Proposition 5 from a calculation in the homology of groups (Lemma ?7?). This calculation will
be carried out in the next lecture.

Remark 6. The sum appearing in Proposition 5 is actually finite, since (2k — a,b — k — 1) vanishes unless
a <2k < 2b.

Definition 7. Let Fo{..., Sq~1,8q%, 8qt, .. .} denote the free associative Fa-algebra generated by the sym-
bols {Sq’}icz. The big Steenrod algebra AP is defined to be the quotient of Fo{...,Sq™*,Sq",Sq',...} by
imposing the Adem relations

Sq*Sq’ = Z(Qk: —a,b—k—1)Sq"™*Sq*7F.
i

for every a < 2b.

We observe that AP'8 the structure of a graded algebra, where each generator Sq’ is given degree i. A
module over the big Steenrod algebra AP® is a graded vector space V over the field F5, equipped with an
action AB8 @V — V which respects the grading: if v € V is homogeneous of degree n, then Sq* (v) is
homogeneous of degree n + k. We will say that V is unstable if, whenever qu(v) vanishes whenever v is
homogeneous of degree < k.

Example 8. Let V be a complex equipped with a good symmetric multiplication. Then Proposition 5
implies that the cohomology H* (V) has the structure of a unstable AP%&-module.

Definition 9. The Steenrod algebra A is defined to be the quotient of AP by the (two-sided) ideal generated
by the element 1 — Sq°. We will say that a (graded) A-module is unstable if it is unstable when regarded as
an AB8-module.

Example 10. Let X be a topological space. Since Sq” acts by the identity on the cohomology H*(X), we
conclude that H*(X) has the structure of an unstable module over the Steenrod algebra.

Remark 11. In the last lecture, we saw another feature of the action of Steenrod operations on the co-
homology of spaces: the operations Sq~“ vanish for a > 0. In fact, this is a formal consequence of Adem
relations and the fact that Sq° acts by the identity. In other words, for a > 0 the element Sq™ is equal to
zero in the Steenrod algebra A. We will prove this by induction on a. For this, we invoke the Adem relations
to deduce
Sq % =8q *Sq¢° = Z(Qk +a,—k —1)Sq*Sq 7",
k

If k>0 or —§ <k, then the coefficient (2k + a, —k — 1) vanishes. But if —§ <k < 0, then Sq~ %% is equal
to zero in A by the inductive hypothesis.

We now turn to the proof of Proposition 5. We begin with the following observation:

Remark 12. Recall that if V' is a complex equipped with a symmetric multiplication, then QV inherits a
symmetric multiplication, and the isomorphism

H*(V) ~ H*TH(QV)

is compatible with the action of the Steenrod operations. The same argument shows that if V' has a good
symmetric multiplication, then the induced symmetric multiplication is also good. Consequently, in proving
Proposition 5 we are free to replace V' by any shift Q"/(V). In other words, we are free to enlarge the degree
n of the cohomology class v.

The formula of Proposition 5 looks very assymetric: the left hand side has only one term, while the
right hand side has many terms. We will deduce Proposition 5 from the following more symmetric looking
assertion:



Lemma 13. Let p and q be positive integers, let V be a complex with a good symmetric multiplication, and
let v e H"(V). Then we have an equality

D (p =2, Sq™ T Sq" T ) = 3 (g — 20, 1) 8P Sq" T (v)
l Il
in H"~P=9(V).
Assuming Lemma 13, we can now prove Proposition 5.

Proof. Choose an integer m > 0. According to Remark 12, we are free to enlarge n as much as we like; in
particular, we can choose n = 2™ — 1 4+ b. We will now apply Lemma 13 with p =2™ — 1 and ¢ = 2n — a.
Let us now evaluate both sides of the expression appearing in Lemma 13. The left hand side is given by

D@m= 1-21,1)8q* " 8" (v).
l

The coefficient (2™ — 1 — 21,1) obviously vanishes if [ < 0, or if { > 2™71. If 0 < [ < 2™~1| then we can
write | = 2% 4+ 271y, where 0 < 2 < m — 2. We now observe that 2% appears in the base 2 expansion of
both 2™ — 1 — 21 and [, so the coefficient (2" — 1 — 2[,1) vanishes. It follows that the left hand side consists
of only one nonzero term, given by the expression Sq Sq’(v).

We now evaluate the right hand side. Let k = 2™ +b—1' — 1, so that the left hand sum can be written as

Z(Qk —a,2" 4+ b—k—1)Sq"" Sq**(v).
k
To complete the proof, it will suffice to show that for every integer k, either
2k—a,2"4+b—-k—-1)=2k—a,b—k—1)
or Sq*** Sq*~*(v) vanishes. We consider four cases:
(i) 2k < a: In this case, we have

2k —a, 2™ +b—k—1)=(2k—a,b—k—1) = 0.

(#4) a < 2k < 2b: In this case, 2k —a < 2b—a < 2™. It follows that (2k — a, 2) = (2k — a, 2+ 2™) for every
nonnegative integer x (see Notation 4).

(791) 2b < 2k < a + 2™: The expression (2k — a,b — k — 1) vanishes in this case. Moreover, we have
2k —a > 2b— a > 0, so we can choose a nonnegative integer y such that 2¥ <2k —a < 2vtl _ 1. Our
assumption implies that y < m. Since 2k < 2¢+t! +q4—1 < 29+ +2b—2, we deduce that k—b+1 < 2.
We now observe that 2¥ appears in the base 2 expansion of both 2k — a and 2™ — (k — b+ 1), so the
expression (2k — a,2™ + b — k — 1) vanishes.

(iv) a+ 2™ < 2k: In this case, we have
deg(Sq* *(w) =(a—k)+n=(a—k)+ (2™ +b—1).

Since a+2™ < 2k, we get deg(Sq® " (v)) < k+b—1 < k+b. Thus Sq*** Sq**(v) vanishes for reasons
of degree.

O

We now turn to the proof of Lemma 13. As usual, the equation among Steenrod operations on a complex
V with a symmetric multiplication is an immediate consequence of the following more universal relation,
which holds for any complex V:



Lemma 14. Let V be a complez, let p and q be positive integers, and let v € H" (V). Then the sums

> (21,05 ' 5q" " (v) € H P U(Dy(Dy(V))
l

Z(q - 21,’ l/) S—an—p—z/ ?qn_p+l/(v) c H4n7p7q(D2(D2(V)))
l/

have the same image in H*™"P~9(Dy(V)) under the map ¢ : Do(D2(V)) — Da(V).

To prove Lemma 14, we may assume that V' ~ Fy[—n] is generated by the cohomology class v. In this
case, Dy(V') ~ Vh%t can be identified with a (4n)-fold shift of the chain complex C,.(B%4). Similarly,

can be identified with a shift of the chain complex C,(BG), where G is the semidirect product Yo X 3o X
Y9, which we can identify with a 2-Sylow subgroup of ¥4. Let us use our usual basis {x;};<o for the
homology H.(BX2). As we saw in the second lecture, this determines a basis for H, (BG) ~ H™" Do (C,(BX2),

consisting of pairwise products {z;z,};<; and Steenrod operations {Sq x;}r<_;. We have an isomorphism

H.(BG) ~ H*"*(D3(D2(V))),

n—i

k . . .
* ‘(v). Consequently, Lemma 14 is an immediate consequence of the

. . ok =2 o
which carries Sq z; to Sq " Sq

following assertion:

Lemma 15. Let p and q be positive integers. Then the expressions

——q—1
> (p—20L,1)Sq " @y € Hyyy(BG)
l

— -1
Z(q —20',1)8q " Tg-1r € Hpyq(BG)
l

have the same image in Hyiq(BX4).

We will prove Lemma 15 in the next lecture.



