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Admissible Monomials (Lecture 6)

Recall that we have define the big Steenrod algebra AP® to be the quotient of the free associated Fs-
algebra

Fof..., Sq~1,8q°% Sq, .. 3

obtained by imposing the Adem relations:

Sq*Sq’ = Z(2k —a,b—k—-1) Sqbtkgqe*
k

for a < 2b, and the Steenrod algebra A to be the quotient of of AP by imposing the further relation Sq° = 1.
Our goal in this lecture is to explain some consequences of the Adem relations for the structure of the
algebras AP*® and A.

We say that a monomial SqSq® is admissible if a > 2b. If Sq®Sq® is not admissible, then the Adem
relations allow us rewrite the monomial Sq® Sq’ as a linear combination of other monomials. We observe
that the coefficient (2k —a,b —k — 1) appearing in the Adem relations vanishes unless § < k < b. Using the
inequality k£ > 5, we deduce

a_ a a a
b+k>b+=->—-+4+=-=2(a— =) >2(a—k).
+_+2>2+2 (a 2)_(a )
In other word, the Adem relations allow us rewrite each inadmissible expression Sq* Sq’ as a sum of admissible
monomials.
We would like to generalize the preceding observation. For every sequence of integers I = (i, -1, - ,0),
we let Sq’ denote the product Sq' Sq'~1...Sq". We will say that the sequence I is admissible if

ij > 2ij_1
for 1 < j < n. In this case, we will also say that Sq’ is an admissible monomial.

Proposition 1. The big Steenrod algebra APY is spanned (as an Fa-vector space) by the admissible mono-
mials Sq’. The usual Steenrod algebra A is spanned by the admissible monomials Sq' where I is a sequence
of positive integers.

Proof. Recall that Sq' is equal to zero in A if i < 0. It follows that Sq’ vanishes in A unless I is a sequence
of nonnegative integers. Moreover, if I’ is the sequence of integers obtained from I by deleting all occurences
of 0, then Sq’ = Sq’ "in A (since Sq? = 1); moreover, if Sq’ is admissible then Sq’ " is also admissible. Thus,
the second assertion follows from the first.

The idea of the proof is now simple: let I be an arbitrary sequence of integers. We wish to show that we
can use the Adem relations to rewrite Sq’ as a linear combination of admissible monomials. The proof will
use inducation. In order to make the induction work, we will need the following slightly stronger inductive
hypothesis:



(%) Let I = (in,...,i0) be a sequence of integers, and let = be an integer such that i; < 27z for 0 < j < n.
Then in APB® there is a relation of the form

Sq' = "Sq",

where each I(a) = (in(a),...,ig(a)) is an admissible sequence satisfying i;(a) < 27z for 0 < j < n.

We will prove this result by induction on n. For fixed n and x, we will use descending induction on i,
(this is justified since i,, is bounded above by 2™z, by assumption).

If n = 0, then assertion (x) is vacuous, since the expression Sql is automatically admissible. Let us
therefore assume that n > 0. Let I = (iy,...,i), and let I’ = (ip—1,...,49). By the inductive hypothesis,
we get an equation of the form

Sq" =Y "8q"?,
B

so that _ ) _ )
Sq’ =Sq'"Sq’ = Z Sq’" Sql' @)
B
It therefore suffices to prove (x) for the sequences (in,i,—1(0),...,%0(03)). In other words, we may assume
without loss of generality that the sequence I' = (i,,_1,...,%0) is already admissible.

If 4,, > 2i,_1, then the sequence I is admissible and there is nothing to prove. Otherwise, we can invoke
the Adem relations to deduce

Sq'm Sq't = (2k — in,in_1 — k — 1) Sqin TSI E
k

The terms on the right side vanish unless % < k < ip—1. In particular, we get

in—1+k < 2,1 <2"x

i
in—kgin—E"SQ”’lx

so that the new sequence J = (i,—1 + k, 4, — k,9n—2,...,10) satisfies the hypotheses of (x). Moreover,
in—1+k> 5”+5":zn,

so the inductive hypothesis implies that Sq” can be rewritten in the desired form. O

Scholium 2. Let B be the subspace of AP® generated by Sql, where I = (in,...,10) is an admissible
sequence of nonpositive integers. Then B is a subalgebra of AP,

Proof. Apply (x) in the case z = 0. O

The subalgebra B C AP8 is usually called the Dyer-Lashof algebra.
Proposition 1 is subsumed by the following stronger result:

Proposition 3. The admissible monomials Sq’ form a basis for the big Steenrod algebra AP"9. The ad-
missible monomials of the form Sq’, where I is a sequence of positive integers, form a basis for the usual
Steenrod algebra A.



Proposition 1 already implies that AP is generated (as a vector space) by the admissible monomials.
Hence, the only thing we need to check is that the admissible monomials are linearly independent. This is a
consequence of a more precise result, which we now formulate. First, we recall a bit of terminology. Let M
be a module over AP (always assumed to be graded). We say that M is unstable if Sq*(m) = 0 whenever
k > deg(m).

Let I = (in,%n—1,---,%0) be an admissible sequence of integers, so we can write i; = 2i;_1 + €¢; where
€; > 0. The sum €, + ... + € + ip is called the excess of I. Our reason for introducing this notion is the
following:

Lemma 4. Let M be an unstable APY-module, and let I = (i, ...,io) be an admissible sequence of integers.
Then Sql(m) vanishes whenever the excess of I is larger than the degree of m.

Proof. Let I' = (in_1,...,i0). To show that Sq’(m) vanishes, it will suffice to show that i,, > deg(SqI/ (m)).
We now observe that

in - deg(SqI/ (m)) = ’Ln - (in—l + ...+ io + deg(m)) = (in - 2in—1) + (in—l — Qin_g) + ...+ io — deg(m)
is positive if the excess of I is larger than the degree of m. O

Given any graded AP®®-module M, we can construct an unstable AP®-module by taking the quotient of
M by the submodule generated by elements of the form Sq’(m), i > deg(m). In particular, if we take M to
be the free AP®-module generated by a single class in degree n, then we obtain an unstable AB%-module
which we will denote by FB8(n): we call FB8(n) the free unstable APY-module on one generator in degree
n. There is a canonical element 7,, € F?#(n)". By construction, this element has the following universal
property: if N is any unstable AP®-module, then evaluation at 7, induces an isomorphism of Fa-vector
spaces Hom gnis (FB#(n), N) — N™.

Similarly, we can define the free unstable A-module on a generator in degree v,,, which we will denote by

Proposition 3 is an immediate consequence of the following result:

Proposition 5. Let n be an integer. Then:

(1) The free unstable APY-module FP(n) has a basis consisting of elements Sq' Uy, where I is an admis-
sible sequence of excess < n.

(2) The free unstable A-module F(n) has a basis consisting of elements Sq’ vy, where I is an admissible
sequence of positive integers of excess < n.

Once again, half of Proposition 5 is clear: since AP is generated by admissible monomials, FBi&(n) is
generated by expressions of the form Sq’ 7, where I is admissible. Lemma 4 implies that Sq’ 7 vanishes if I
has excess > n. Thus FB8(n) is generated by admissible monomials Sq! 7,,, where I is admissible and has
excess < n. The same reasoning shows that F(n) is generated by elements of the form Sq’ vy, where T is
admissible, positive and has excess < n.

To complete the proof of Proposition 5, we need to show:

(1') The elements {Sq’ 7,,} are linearly independent in FP8(n), where I ranges over admissible sequences
of excess < n.

(2') The elements {Sq’ v,} are linearly independent in F(n), where I ranges over positive admissible
sequences of excess < n.

Our strategy is as follows. Let M be an unstable module over the Steenrod algebra A, and let v € M™.
Then, by construction, we get an induced map F(n) — M of modules over the Steenrod algebra. To show
that the generators {Sq’ v, } are linearly independent in F(n), it will suffice to show that the elements
{SqI v} are linearly independent in M. It will therefore suffice to find a particularly clever choice for the pair



(M,v). Fortunately, we have a host of examples of modules unstable A-modules to choose from: namely,
the cohomology H*(X) of any space X is an unstable A-module. We will therefore be able to deduce (2)
by finding a sufficiently nontrivial example of a cohomology class on a topological space. We will return to
this point in the next lecture.

Let us assume (2') for the moment, and show how to use (2’) can be used to deduce (1’). The proof is
based on the following observation:

Lemma 6. Let n and p be integers. Then there is a canonical isomorphism of vector spaces
¢ : FBi8(n) - FBig(n 4 p)
described by the formula
Sq'™ ... Sq™ SqP° Ty > Sqim TP L ST §qiotP Upip-
Proof. The above formula defines a map
¢~$: Fof...,8q 8¢, .. 7, = Faof...,Sq 1, 8¢", .. $Vn4p

of free modules over the free algebra R = Fof..., Sq7%,8¢%, 8¢, .. .}. To show that ¢ is well-defined, we
need to show that ¢ descends to the quotient. This amounts to two observations:

(a) Let J denote the two-sided ideal of R generated by the Adem relations. Then ¢ carries J7, into JUptp-
This amounts to a “translation-invariance” feature of the Adem relations: if a < 2b, then we have an

Adem relation
Sq*Sq’ = Z(Zk: —a,b—k—1)Sq""*sq*7F.
k

But we also have (a + 2'p) < 2(b+ 2!~!p), and a corresponding Adem relation

Sqa+21p qu+2’—1p _ Z(% Ca— 21p, b4l 1) qu+2l_lp+k Sqa+2’p7k .
k

Letting k' = k + 2/~ 1p, we can rewrite this as

Sqa+2lp qu+2l*1p _ Z(%/ —ab— K — 1) qu+2lp+lc' Sqa+2l*1—k’
kl

which is precisely the sort of term that appears in the image of 5

(b) Let x € R, have degree ¢, so that Sq®(z) vanishes in FB&(n) for a > ¢. We wish to show that

#(Sq*(x)) vanishes in FB#(n + p). Without loss of generality, we may suppose that
z=Sq"™...8q" 7,,
where ¢ = i,, + ...+ 49 +n. Then
~ a adom+1 imA2 i _ agomtly ~
B(Sq*(x)) = Sq"t? PSP L 8q P D, = Sq* TP P g(a)
vanishes in FP#(n + p) since
a+2" D> (i 4 .. Ao+ 1) 4+ 27 = (i + 27p) + ... + (i0 + p) + (n + p) = deg(o(z)).

This completes the proof that ¢ is well-defined. To show that ¢ induces an isomorphism FP&(n) —
FBi&(n+p), we observe that the same construction (applied to n-+p and —p) gives a map FBi&(n+p) — FBig(n)
which is inverse to ¢. O



Proof of (2') = (1'). Fix an integer n. We wish to show the elements Sq’ 7, are linearly independent in
FBi&(n), where I ranges over admissible sequences of integers of excess < n. Assume otherwise; then there
exists a nontrivial relation of the form
8¢/ 5, = 0.
«

Choose p > 0, and let ¢ : FB#(n) — FB(n + p) be as in Lemma 6. We then get a nontrivial relation

Z #(Sq" @ w,) = Z Sq’ v, , =0

in FBi&(n + p). It follows that
ZSqJ(O&) Untp = 0

in F(n + p). The sequences J(«) are distinct, admissible, and positive if p is chosen sufficiently large.
Thus (1') implies that the elements {Sq”’(®) Vn+p} are linearly independent in F(n + p), and we obtain a
contradiction. O



