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A Theorem of Gabriel-Kuhn-Popesco (Lecture 8)


Let C be an abelian category. Suppose that C is equivalent to the category Mod(R) of (right) modules 
over an associative ring R. How might we recognize this? To answer this, we first recall a very general 
definition: 

Definition 1. Let C be an abelian category which admits direct sums. A collection of objects {Cα} generates 
C if, for every object D ∈ C, there exists an epimorphism 

⊕iCαi D. → 

A Grothendieck abelian category is an abelian category C satisfying the following conditions: 

(1) The category C admits filtered colimits, and the formation of filtered colimits is exact (in other words, 
a filtered colimit of monomorphisms is a monomorphism). 

(2) There exists a set of generators {Cα} for C. 

If C is equivalent to Mod(R), then it has a distinguished object C, corresponding to R (regarded as a 
module over itself). We can then recover R as the ring of endomorphisms HomC(C,C). More generally, 
given any object D ∈ C, we can define a (right) R-module G(D) by the formula 

G(D) = HomC(C,D). 

If C is a Grothendieck abelian category, then the functor G has a left adjoint F , which we will denote by 

M �→ M ⊗R C. 

The adjoint functors F and G determine an equivalence between C and ModR if and only if the following 
three conditions are satisfied: 

(1) The object C generates C. 

(2) The object C is projective: that is, the functor HomC(C, •) is exact. 

(3) The object C is compact: that is, the functor HomC(C, •) commutes with filtered colimits (in view of 
(2), this is equivalent to requiring that HomC(C, •) commutes with all colimits, or with direct sums). 

If C fails to satisfy conditions (2) and (3), then there is still a close relationship between C and Mod(R): 
namely, C is a localization of Mod(R). This is the classical Gabriel-Popesco theorem. 

Condition (1) is not very restrictive: every Grothendieck abelian category admits a generator. Note, for 
example, that if C is generated by a set of objects {Cα}, then C is generated by the single object C = ⊕αCα. 
However, the ring R = HomC(C,C) in this case might be rather unwieldy. It will therefore be convenient to 
formulate a “many-object” version of the Gabriel-Popesco theorem. We will follow the presentation of Nick 
Kuhn. 

Throughout the remainder of this lecture, we fix the following notation: 
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• C will be a Grothendieck abelian category. 

• {Cα} will be a set of objects of C which generates C. 

• R will denote the full subcategory of C spanned by the objects {Cα}. 

Definition 2. A R-module is a contravariant functor M from R to the category of abelian groups, which is 
linear in the following sense: for every pair of objects C,D ∈ R, the map 

HomC(C,D) × M(D) → M(C) 

is bilinear. 
The collection of R-modules can be organized into a category, which we will denote by Mod(R). 

Example 3. If R consists of a single object C ∈ C, then a R-module is simply a right module over the ring 
R = HomC(C,C). 

Example 4. Let D be an object of C. Then the functor C �→ HomC(C,D) is a R-module. We will denote 
this R-module by G(D). This construction determines a functor 

G : C Mod(R).→ 

Theorem 5 (Kuhn, Gabriel-Popesco). (1) The functor G admits a left adjoint F . 

(2) The functor G is fully faithful. 

(3) The functor F is exact. 

Remark 6. Theorem 5 implies that C can be obtained as a localization of Mod(R). More precisely, let K 
denote the full subcategory of Mod(R) spanned by those modules M such that F (M) � 0. Then K is a 
Serre subcategory of Mod(R), and F induces an equivalence 

Mod(R)/ K � C . 

The rest of this lecture is devoted to proving Theorem 5. We will later apply this theorem in the case 
where C is the category Fun = Fun(Vectf , Vect). Combined with the results of the previous lecture, this will 
yield some interesting information on the category of unstable modules over the Steenrod algebra A. 

Assertion (1) follows from the adjoint functor theorem. To prove (2) and (3) we will follow the argument 
presented in Kuhn, “Generic Representations of the Finite General Linear GRoups and the Steenrod Algebra 
I”. 

Lemma 7. Let M be an R-module and let D ∈ C. If u : M → G(D) is a monomorphism in Mod(R), then 
the adjoint map u� : F (M) D is a monomorphism in C.→ 

Proof. We first observe that there is an epimorphism 

π : ⊕α∈M (C)C → F (M ). 

To prove that u� is a monomorphism, it will suffice to show that ker(u� ◦ π) = ker(π). Since R generates C, 
The direct sum ⊕α∈M(C)C is a direct limit of finite sums 

⊕i∈I Ci


Let πI denote the restriction of π to this finite sum. Since filtered colimits in C are exact, we deduce that


ker(u� ◦ π) � colim ker(u� ◦ πI ) 
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ker(π) � colim ker(πI ). 

It will therefore suffice to show that ker(u� ◦ πI ) = ker(πI ) for every finite set I. 
Since R generates C, it will suffice to show that for every, C ∈ R, any map C ker(u� ◦ πI ) factors 

through ker(πI ). In other words, we must show that if we are given a diagram 
→ 

C 
β πI F (M) u� 

D→ ⊕i∈I Ci → → 

such that u� ◦ πI ◦ β = 0, then πi ◦ β = 0. The map β corresponds to a family of maps {βi : C Ci}i∈I ,→
and the map πI is given by a family of elements {αi ∈ M(Ci)}i∈I . We now observe that πI ◦ β is the map 
given by � 

γ = αiβi ∈ M(C). 
i∈I 

The map u� ◦ πI ◦ β can be identified with u(γ) ∈ G(D)(C) � HomC(C,D). Since the map u is a monomor­
phism, the equation u� ◦ πI ◦ β = 0 implies γ = 0, so that πI ◦ β also vanishes. 

Corollary 8. Let C ∈ C. The the counit map v : FG(C) → C is an isomorphism. 

Proof. The counit map is adjoint to the isomorphism G(C) G(C). Lemma 7 implies that v is a monomor­
phism. 

→ 

Let C � ∈ R, and let α : C � → C be a morphism in C. Then α can be viewed as an element of G(C)(C �), 
and therefore determines a map α� : C � → FG(C) such that v ◦ α� = α. In other words, every map C � → C 
factors through v if C � ∈ R. Since R generates C, we deduce that v is an epimorphism. 

Corollary 9. The functor G is fully faithful. 

Proof. For every pair of objects C,D ∈ C, we have isomorphisms 

HomC(C,D) � HomC(FG(C), D) � HomMod(R)(G(C), G(D)). 

Let us say that an object M ∈ Mod(R) is free if it is a direct sum of objects of the form G(C), where 
C ∈ R. For any R-module N , Yoneda’s lemma yields an isomorphism 

HomMod(R)(G(C), N) = N(C). 

Since the evaluation functors N �→ N(C) are exact, we conclude that the free objects of Mod(R) are 
projective. Moreover, Mod(R) is generated by free objects: for any N ∈ Mod(R), the map 

N⊕α∈N(C)G(C) → 

is an epimorphism. Consequently, every N ∈ Mod(R) admits a free resolution 

. . . P1 → P0 → N. → 

We can therefore define the left derived functors of F : by definition, LiF (N) is the ith homology of the 
complex 

. . . F (P1) F (P0).→ → 

Since the functor F preserves colimits, we deduce that 

L0F (N) � coker(F (P1) → F (P0)) � F coker(P1 → P0) � F (N). 

That is, F is its own 0th derived functor. 
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For every short exact sequence of R-modules 

0 M � M M �� 0,→ → → → 

we get a long exact sequence of right derived functors 

. . . L1F (M ��) F (M �) F (M) F (M ��) 0.→ → → → → 

Consequently, to prove that F is exact it will suffice to show that the derived functors LiF vanish for i > 0. 
In other words, it will suffice to show: 

Lemma 10. Suppose given an exact sequence of R-modules 

. . . N, → P1 → P0 → 

where each Pi is free. Then the induced sequence 

. . . F (P1) F (P0) F (N )→ → → 

is exact in C. 

To prove Lemma 10, we note that a long exact sequence is obtained by can be obtained by splicing 
together short exact sequences 

0 → Im(P1 → P0) → P0 → N 

0 → Im(P2 → P1) → P1 → Im(P1 → P0) → 0 

. . . 

It will suffice to show that the functor F preserves each of these short exact sequences. Since F preserves 
colimits, it is automatically right exact. So the only question is whether or not F preserves the monic arrows 
which appear above. This follows from: 

Lemma 11. Let P be a free R-module, and let M ⊆ P . Then the induced map F (M) → F (P ) is a 
monomorphism in C. 

Proof. We can write P = colim{Pα}, where each Pα is a finitely generated free module. Let Mα = M ∩ Pα. 
Then the map F (M ) F (P ) is a filtered colimit of maps of the form F (Mα) F (Pα). Since the collection → →
of monomorphisms in C is stable under filtered colimits, we may reduce to the case where P = Pα is finitely 
generated. 

In this case, we can choose a finite collection of objects {Ci ∈ R}1≤i≤n such that P = ⊕1≤i≤nG(Ci). Let 
C = ⊕1≤i≤nCi, so that P = G(C). Then 

F (P ) � ⊕1≤i≤nFG(Ci) � ⊕1≤i≤nCi � C. 

The map F (M) F (P ) � C is adjoint to the inclusion M ⊆ P � G(C), and is therefore a monomorphism 
by Lemma 7. 

→ 
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