Lecture 15.

16 A brief introduction to linear analysis

In anumberof placewe’ve talkedaboutthesocalledinfinite dimensionatontext.
In this sectionwe’ll introducebriefly the basicnotionsnecessaryo discussthis
story rigorously.The main application we have in mind is to the

16.1 Basic definitions

Definition 16.1. A normedvector spaceis a vector spaceX (over the real or
complexnumbers)ith afunction|| - || : X — R, satisfyingtheusualproperties
of anorm. A Banachspacas acompletenormedvectorspacehatis all sequences
which are Cauchy with respect to the converge.

Examples.C%(X), the spaceof continuousfunctionson a compactmetric space
is a Banachspacewith its naturalnorm. Completenesss the statementhat a
uniform limit of continuous functions is continuous.

CK(X), the spaceof k-times continuouslydifferentiablefunctionson a compact
manifold when given the norm

Il sup ”a' f I
ck = — 1l
xeX. lwithe(1)<k  0X!

wherel = (ig,i2,...,in) is amulti-indexand¢(l) = Y-7_,ij. Completeness
follows form the same theorem applied to the derivative$ .of

L P-spaces.

Spaces of dlder continuous functions.

Nextwe wish to considerfunctionson normedvectorspacesit turnsout that
continuity of mapson a normedvectorspaces equivalento boundednessviore
precisely we have:

Definition 16.2. A linearmapT : X — Y is calledboundedf thereis aconstant
C > 0 so that for alx € X we have

ITxlly = Clix|Ix.

Furthermordhe smallestsuchconstantC is calledthe operatomormof T andis
denoted|T ||
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Exercise: T : X — Y is continuous if and onlyl is bounded.
A basicfact of life is thateverynormedvectorspacesitsin canonicafashion
in a Banach space.

Theorem 16.3. To eachnormedvectorspaceX therecorrespondsa uniqueBa-

nachspaceX calledthe completionof X anda uniqueinjectivemapcontinuous
linear mapX — X satisfyingthefollowing universalproperty.lf T : X — Yisa

continuoudinear mapthenthereis a uniquecontinuoudinear mapT : X — Y

so that the operator norm af and T agree.

For proof seefor exampleRoyden’stext. In practicethe significanceof this
theoremis thatwe will considervariousnormson C5°(R") andtakethe comple-
tions with respecto thesenorms. To checkif mapsbetweenthesecompletions
arecontinuoust sufficesto checkthatthe mapis boundedon C3° with respecto
the norms in question.

Definition 16.4. Let B(X, Y) denotethe spaceof boundedinear operatordrom
XtoY.

B(X,Y) is Banachspacein its own right. In factit is a Banachalgebra(i.e.
a Banachspacewith the structureof an algebraso thatfor x,y € X we have
IXYll =< [IXI[yIl-

16.1.1 The three pillar’s of linear analysis

You canlook in any book on Functionalanalysisfor this material. Its alsoin
Abraham-Marsden and Ratiu.

Theorem 16.5. The Hahn-BanachtheoremLet X be a linear spaceoverF =
RorCandp: X — R be a map satisfying

1. Forall x,y € X p(x +Y) < p(x) + p(y)
2. Forall » € Fand allx € X we havep(iAx) = |A| p(X).

LetZ ¢ X bealinear subspacandp : Z — F bealinear functional. If for all
z € Z wehave|p(z)| < p(2) thenthereis a linear functionalp : X — F which
extends and satisfie$p(X)| < p(x) for all x € X.

The proof goesby a Zorn’s lemmaargumentconsideringall possibleexten-
sionswith the given property. One showsthatthis is a partially orderedsetand
any extension which is not defined on the whole space has a nontrivial extension.
This has one corollary that we will need later.
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Corollary 16.6. Let X bea Banachspaceand F C B a finite dimensionakub-
space.ThenF hasclosedcomplementargubspace(i.e., thereis a closedsub-
spaceC ¢ BsothatF "nC = {0} andF + C = B.

Proof. Takea basis{fi, ..., f)n} for F. Let¢1, ..., ¢, bethecorrespond-
ing dual basisof F*. Clearlythe ¢; satisfythe hypothesisof the Hahn-Banach
theoremwith p beinga multiple of the norm. So thereare linear functionals
@1, ..., n extending theseSetC = NI, ker(¢).

Theorem16.7. The Openmapping theoremAnysurjectiveboundedinear map-
ping T : X — Y is an open mapping, that is it takes open sets to open sets.

The proof of this theorem is an application of the Baire category theorem.
An important corollary is the Banach isomorphism theorem.

Theorem16.8. The BanachisomorphismtheoremAboundedinear mapT : X —
Y which is an isomorphism of vector spaces is a topological isomorphism.

Proof. At issueis showthat T~ which existsasa map of setsis continuous.
Sowe mustshowfor all U ¢ X openthat(T~1)~1(U) = T(U) isopen. T is
surjective so this following from the open mapping theorem. O

Theorem 16.9. The closedgraph theorem A linear operatorT: X — Y is
bounded if and only if its graph1'= {(x, TX)|x € X|| € X x Y is closed.

16.2 Compact operators

In this subsubsectioX andY will denote Banach spaces.

Definition 16.10. A linearoperatorT : X — Y is calleda compactoperatorthe
image undef of the unit ball inX has compact closure M.
Remark2. Compact operators are sometime called completely continuous.

The prototypicalcompactoperatoiis the following Let X andY bethespace
¢2 of all sequencea = (ay, ay, .. .) so that)_°,(a;)? < oo and define

T(ag,a,...) =(a1,a2/2,a3/3,...,ay/Nn,...)

To seethat T is compactchoosea sequencea! in B; the ball of radiusone. By
a diagonalargumente canpassto a subsequenceherecomponent®f a' con-
vergeto somea™. Thenwe claim thatT(a') convergesn ¢2. Choosee > 0.
Then chooséy > 0 so that the following hold.
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2. (X0t a — ar|d)t < e/2.

The last follows from the component-wise convergerideen we have for > ig

ip—1 00
: 1 . 1 . 1
IW@%W@%V§§hﬂ%—$¥+Q:@%—mﬁ%?
n=1 n=ig

1
<e?/a+ 5 > ey —ayl?
0 n=ig

< e?/4+€?/4 = €?)2.

Thebasicresultthatwe will needis Arzela-Ascolitheorem.Let B beaballin
R". Recallwe call asubsetA € CO(B) equicontinuousf for all ¢ > 0 thereis a
8 > 0sothatiflx —y| < dthen|f(x) — f(y)| <eforall f € A

Theorem 16.11. (Arzela-Ascoli). A subsetA € C%(B) hascompactclosurein
Cc9(B) if and only if A is bounded and equicontinuous.

This has an immediate corollary:

Corollary 16.12. The embeddinG(B) — C9(B) is compact.

Proof. The unit ball in C%%(B) is certainlyboundedn CO(B). If || f|lco« < 1
then| f(xX) — f(y)| < |x — y| we can take & e. O
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